Effect of the implementation of extra intermediate strips in the spacial resolution of a silicon strip detector

Javier Jiménez Peña

- Silicon microstrip sensors
- Detector design
- Experimental setup
- Charge distribution function
- Summary & conclusions

Silicon microstrip sensors

Silicon microstrip sensors

Silicon microstrip sensors are a widely used detector in particle physics experiments

They are used intracking systems as the SCT of the ATLAS inner detector

Silicon microstrip sensors

- It is based in a inverse biased PN junction.
- Highly doped silicon strips are placed on a wafer of silicon.
- Each strip is read independently. Position can be measured.

Silicon microstrip sensors

- Charged particles going through the detector create multiple electron-hole pairs by ionization.

- The electric field inside the depleted zone sweeps the pairs to the electrodes.
- The drift of electrons and holes induce a current that can be measured.

Detector design

Detector design

Detector design

Two different designs have been used.

Intermediate strips are left unbiased, so they are called floating intermediate strips.

Experimental setup

Experimental setup

Laser setup properties:

- Predetermined trigger
- Fast data acquisition
- Known emission direction
- Photoelectric effect

Charge distribution function

Charge distribution function

M-14 : No intermediate strip

Effect of the laser beam shape

As the laser beam shape follows a gaussian distribution, when laser is centered in a position x, a small region is lightened. What is measured then is the convolution of the detector charge distribution function, q(x), with the gaussian profile of the laser beam, given by:

$$Q(x) = \lim_{\sigma \to \infty} \int_{-\infty}^{+\infty} q(x') e^{\frac{1}{2}\left(\frac{x'-x}{\sigma}\right)^2} dx'$$
15

 $f(x) = A \int_{-\infty}^{x} e^{\frac{1}{2}(\frac{x'-x_{o}}{\sigma})^{2}} dx' + C$

Experimentally, we four
$$f(x) = A \int_{-\infty}^{x} e^{\frac{1}{2}(\frac{x'-x_o}{\sigma})^2} dx' + C = Q(x)$$

Left strip
$$q(x) = \begin{cases} 1 & x < x_o \simeq p/2 \\ 0 & x \ge x_o \simeq p/2 \end{cases}$$
Right strip $q(x) = \begin{cases} 0 & x < x_o \simeq p/2 \\ 1 & x \ge x_o \simeq p/2 \end{cases}$

Is the only charge distribution function, q(x), that connects both equations

$$Q(x) = \int_{-\infty}^{+\infty} q(x') e^{\frac{1}{2}(\frac{x'-x}{\sigma})^2} dx' \quad \& \quad f(x) = A \int_{-\infty}^{x} e^{\frac{1}{2}(\frac{x'-x_o}{\sigma})^2} dx' + C = Q(x)$$

Charge distribution function

M-8 : Floating intermediate strip

Floating-intermediate-strip model

$$Q(x) = ax + b \qquad \longrightarrow \qquad q(x) = \frac{p - x}{p}$$

Floating-intermediate-strip model

q(x) is a linear function
It allows the use of weighting techniques

M-14 & M-8

As the distribution charge function of the interstrip-free model is a step function, strip A collects all the charge created by the incoming particle in detector **M-14**.

In detector **M-8**, charge is shared between both strips due to the linear charge distribution function. This allows an improvement of the resolution by a weighted of the signals. 23

Summary & conclusions

When studying the charge distribution function, the laser beam has introduced many problems:

- As **laser light does not transmit through aluminium**, the region of study has been limited to the central area between strips.

- The **high dispersion of the laser beam** has masked the results of the charge distribution function measures, as we were really measuring the convolution of this last one with the shape of the laser beam.

A better focusing of the laser beam must be achieved in future measurements in order to get a preciser parametrization of the charge distribution function of each device.

The implementation of an **intermediate strips seems to improve the resolution** of the detector, as the charge distribution transforms from a step function in M-14 to a linear function in M-8.