Search for pair produced top squarks into a charm quark and the lightest neutralinos in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector at the LHC

Roger Caminal Armadans

16th September 2013

Motivation (1)

- Particles in the Standard Model (SM) have masses around the EW scale.
 - > No new particles between $M_{_{W}}$ (~10² GeV) and $M_{_{P}}$ (~10¹⁸ GeV)?
- Higgs mass receives quantum corrections from every particle to which it couples.
 - > Corrections can be up to 30 orders of magnitude larger than M_{H} (if $\Lambda_{UV} \sim M_{P}$)

- Already a serious problem at 5 TeV to cancel top, gauge and Higgs loops.
 - Is there a mechanism to cancel them?

Motivation (2)

- Rotation of the stars around the center of the galaxies NOT consistent with the amount of mass observed.
- Gravitational lensing is an indication of Dark Matter (DM) in galaxy clusters.
- Collisions of clusters of galaxies
- Neutrino is NOT a good DM candidate
- What is DM?

DISTRIBUTION OF DARK MATTER IN NGC 3198

 Inclusive SUSY searches point to squarks and gluinos at the level of the TeV.

- In scenarios with very heavy scalar quarks and gluinos, all the interest is now in searches for light third generation quarks.
- When $\Delta m = m_{\tilde{i}} m_{\tilde{\chi}_1^0} < m_b + m_W$, the stop decay into a charm quark and the lightest supersymmetric particle, $\tilde{i} \rightarrow c + \tilde{\chi}_1^0$, may be de dominant decay process.

- For small Δm, the transverse momenta of the c-jets is too low to be reconstructed. A monojet analysis is used.
- For moderate Δm the charm jets receive a large enough boost to be detected. Charm tagging is used.

Event selection

- Two different selections depending on Δm .
 - Monojet-like selection: assumes that the two charm jets can be lost. Makes use of the presence of initial-state radiation jets to identify signal events.
 - Charm-tagged selection: more than three jets are required. It makes use of charm tagging to enhance the SUSY signal.

Selection criteria					
Monojet-like selection M1	Charm-tagged selection C1				
Primary vertex, jet quality requirements	Primary vertex, jet quality requirements				
and lepton vetoes	and lepton vetoes				
At most three jets with $p_T > 30$ GeV and $ \eta < 2.8$	At least three jets with $p_T > 30$ GeV and $ \eta < 2.5$				
	(in addition to the leading jet)				
	<i>b-veto</i> for second and third jet				
	<i>medium c</i> -tag for fourth jet				
$\Delta \phi(ext{jet}, p_T^{ ext{miss}}) > 0.4$	$\Delta \phi(ext{jet}, p_T^{ ext{miss}}) > 0.4$				
minimum leading jet p_T (GeV) 280	270				
minimum E_T^{miss} (GeV) 220	410				

- Jets are identified as originating from the hadronization of a charm quark via a dedicated algorithm using multivariate techniques.
- The algorithm provides three weights, one for light-flavor quarks and gluon jets, one for charm jets and one for b-jets.
- These weights allow to compute the anti-b, $\log(P_c/P_b)$, and the anti-u, $\log(P_c/P_u)$, discriminators.

	c-tag eff.	b-rejection	light-rejection	au-rejection
Medium	20%	5	140	10
Loose (as b-veto)	95%	2	-	-

Background estimation (1)

- Electro-weak background
 - The production of Z and W bosons in association with jets is the main source of background: 94% for monojet-like and 63% for charm-tagged analyses.
 - Normalized with data-driven scale factors retrieved in W/Z+jets control samples defined separately to normalize the different background processes.

- Top background
 - In the charm tagged analysis is estimated in a separate control region in which b-veto criterion is inverted. It's contribution to the total background is 24%
 - In the case of the monojet-like analysis, this process is small (~2%) and is entirely determined from MC.
- Other less important backgrounds are the multijet, the dibosons and the non-collision background.

Results

- Different systematic uncertainties are considered in the analysis.
 - > Absolute jet Pt and Etmiss energy scale and resolution, pileup corrections, lepton identification efficiencies, the modeling of parton showers and hadronization...
 - Total systematic uncertainty of 3.2% for the monojet-like analysis and a 24% uncertainty for the c-tagged analysis.
- Good agreement is observed between the data and the Standard Model prediction.

Signal Region	M1	C1
Observed events (20.3 fb^{-1})	30793	25
SM prediction	29800 ± 900	29 ± 7

Exclusion limits

- The results are translated into 95% CL limits on the SUSY stop pair production as a function of the stop mass for different neutralino masses.
- Experimental uncertainties on the signal vary between 2% and 10% in the monojet-like selection, and between 8% and 29% in the charm-tagged selection depending on the stop and neutralino masses.
- Renormalization and factorization scales, PDF uncertainties and variations in α_s, result in a theory uncertainty between 14% and 16%.
- Masses for stop up to 200 GeV are excluded at 95% CL for arbitrary neutralino masses.
- For neutralino masses of about 200 GeV, stop masses below 230 GeV are excluded at 95% CL.

• First LHC search for a stop decaying to charm neutralino, yielding a stop mass limit of 230 GeV for $m(\chi_1^0) = 200$ GeV.

Backup slides

The ATLAS detector

Charm tagging

- Uses the primary vertex position or the azimuthal and polar directions of the b-hadron flight axis.
- The algorithm used for charm tag the jets is a combination of two simpler algorithms using a neural network:
 - IP3D: uses the impact parameter information to perform a two dimensional log-likelihood ratio using probability density functions for light and b-jets.
 - JetFitter: uses the secondary vertex information to fit tracks using the decay topologies of b- and c-hadrons in the jet
- This algorithm provides three weights, one for light-flavor quarks and gluon jets, one for charm jets and one for b-jets.
- The combination of these weights provide the discriminants that define the different c-tagging operating points.

