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Introduction

The Landau-Lifshitz equation

In a ferromagnet, the magnetic moment

m : [0,+∞)× R3 → S2

satisfies the Landau-Lifshitz (LL for short) equation :

∂tm + m ∧ ∂tm = 2m ∧∆m.
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Introduction

Formal energy identity

We recall
LL : ∂tm + m ∧ ∂tm = 2m ∧∆m.

One takes the inner product of the LL equations with ∂tm and ∆m to get

(∂tm)2 = 2(m ∧∆m) · ∂tm, (1)
∂tm ·∆m + (m ∧ ∂tm) ·∆m = 0. (2)

Observe that the combination (1)− 2(2) yields

(∂tm)2 − 2∂tm ·∆m = 0.

Then integrate by parts in x and in t to obtain the energy identity : for any T > 0,∫
R3
|∇m|2(T , x) dx +

∫
(0,T )×R3

|∂tm|2 dx dt =

∫
R3
|∇m|2(0, x)dx .
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Introduction

Existence of weak solutions / No uniqueness

Theorem (Alouges-Soyeur, 91’)

Let m0 ∈ L∞(R3;R3)/ |m0| = 1 a.e. and
∫
R3 |∇m0|2 dx < +∞.

Then, there exists a corresponding weak solution m : (0,∞)× R3 → R3 to
the LL equations s.t. |m| = 1 a.e., and, for a.e. T > 0,

J[m](T ) :=
(∫

R3
|∇m|2(t, ·) dx

)
(T ) +

∫
(0,T )×R3

|∂tm|2 dx dt

satisfies

J[m](T ) 6
∫
R3
|∇m0|2 dx .

There is no uniqueness.
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Weak-Strong uniqueness

Weak-Strong uniqueness

Theorem (Dumas-S., 13’)

In the previous setting, assume moreover that m0 is smooth, and assume that
m2 is a global weak solution to the LL equations on (0,∞)× R3 satisfying
the energy inequality, as in the theorem by Alouges and Soyeur,
m1 is a smooth solution to the LL equations up to some time T > 0, with
the same initial data m0.

Then m2 = m1 on (0,T )× R3.
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Weak-Strong uniqueness

Sketch of proof

We denote m := m1 −m2 and expand J[m] := J[m](T ) into

J[m] = J[m1] + J[m2]− 2
( ∫

R3
∇m1 : ∇m2 dx

)
(T )− 2

∫ T

0

∫
R3
∂tm1 · ∂tm2 dx dt.

Using some integration by parts, we have

( ∫
R3
∇m1 : ∇m2 dx

)
(T ) =

∑
i

∫ T

0

∫
R3

(∂i∂tm1) · ∂im2 dx dt

−
∫ T

0

∫
R3

(∆m1) · ∂tm2 dx dt

+

∫
R3
|∇m0|2 dx .
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Weak-Strong uniqueness

Sketch of proof

Now, the two solutions satisfy the energy inequality, so that, for almost every
T ≥ 0,

J[m] 6 K [m1,m2],

where

K [m1,m2] := −2
∑

i

∫ T

0

∫
R3

(∂i∂tm1) · ∂im2 dx dt

+2
∫ T

0

∫
R3

(∆m1) · ∂tm2 dx dt

−2
∫ T

0

∫
R3
∂tm1 · ∂tm2 dx dt.
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Weak-Strong uniqueness

Sketch of proof

With a few manipulations, we recast K [m1,m2] as follows :

K [m1,m2] = 4
∑

i

∫ T

0

∫
R3

(m ∧ ∂i∆m1) · ∂imdx dt

−2
∑

i

∫ T

0

∫
R3

(m ∧ ∂t∂im1) · ∂imdx dt

−2
∫ T

0

∫
R3

(m ∧ ∂tm) ·∆m1 dx dt

+

∫ T

0

∫
R3

(m ∧ ∂tm) · ∂tm1 dx dt.
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Weak-Strong uniqueness

Sketch of proof

Since m vanishes at initial time, Poincaré’s inequality yields∫ T

0

∫
R3
|m|2 dx dt 6 o(T )

∫ T

0

∫
R3
|∂tm|2 dx dt.

Thus, for T small enough, one gets

|K [m1,m2]| 6 1
2

∫ T

0

∫
R3
|∂tm|2 dx dt + C

∫ T

0

∫
R3
|∇m|2 dx dt.

We then use Gronwall lemma to conclude that m vanishes, first for small time,
but the argument can be repeated as many times as necessary.
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Local anomalous dissipation

Local energy identity

Formally, one has the following local energy identity :

∂te + d + div f = 0,

where

e := |∇m|2,
d := |∂tm|2,
f := −2(∂tm · ∂im)i=1,2,3.
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Local anomalous dissipation

Regularization of quadratic terms

Let ψ ∈ C∞c (R3;R) be nonnegative, and such that
∫
R3
ψ(x) dx = 1.

For all ε ∈ (0, 1), we define the usual mollifier ψε := ε−3ψ(·/ε).

Then, for any function φ on R3, we set

φε(x) = (ψε ∗ φ)(x) =

∫
R3
ψε(y)φ(x − y)dy .

For all ε ∈ (0, 1) and functions φ1, φ2, we also define

Bε[φ1, φ2] := (φ1 ∧ φ2)ε − φ1
ε ∧ φ2

ε.
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Local anomalous dissipation

Anomalous dissipation

We have the following result.

Theorem (Dumas-S., 13’)

Let m be a weak solution to the LL equations. Let

da := ∂te + d + div f .

Let

da,ε := −Bε[m, ∂tm − 2∆m] · (∂tmε − 2∆mε).

Then,
da,ε → da in D′

(
(0,∞)× R3;R

)
when ε→ 0,

and this holds true whatever is the mollifier chosen.
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Local anomalous dissipation

Some Besov type conditions

Our goal is to provide some sufficient conditions, which rule out anomalous
dissipation.
Let T > 0, α ∈ (0, 1) and p, r ∈ [1,∞].
For every function u on (0,T )× R3 we define, for (t, y) ∈ (0,T )× (R3 \ {0}),

fα,p[u](t, y) :=
‖u(t, · − y)− u(t, ·)‖Lp(R3)

|y |α
.

We denote
by L̃r (0,T ; Ḃαp,∞(R3)), the space of functions u on (0,T )×R3, which satisfy

sup
y
‖fα,p[u](·, y)‖Lr (0,T ) <∞.

by L̃r (0,T ; Ḃα+1
p,∞ (R3)), the subspace of the u in L̃r (0,T ; Ḃαp,∞(R3)) which

satisfy, for i = 1, 2, 3, ∂iu ∈ L̃r (0,T ; Ḃαp,∞(R3)).
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Local anomalous dissipation

Anomalous dissipation

If we take the inner product of the regularized version of the equations with ∆mε

we face in particular the expression∫
(0,T )×R3

(m ∧∆m)ε ·∆mε dx dt. (3)

Let M,X ,T be respectively some units for magnetic moment, length and time.
Then the quantity in (3) has a dimension equal to X−1 TM3.

We would like to control the term (3) by ‖fα,p[m](·, y)‖3Lr (0,T ) which has a

dimension equal to X
9
p−3α T

3
r M3, which provides r = 3 and p = 9

3α−1 .
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Local anomalous dissipation

Anomalous dissipation

Theorem (Dumas-S., 13’)

Let m be a weak solution to the LL equations.
Assume furthermore that m belongs to L̃3(0,T ; Ḃαp,∞(R3))loc for some
α ∈ (3/2, 2) and p > 9

3α−1 .
Then the local anomalous energy dissipation da vanishes.

In the proof we use that Bε[φ1, φ2] may be written

Bε[φ1, φ2] = rε[φ1, φ2]− (φ1 − φ1
ε) ∧ (φ2 − φ2

ε),

where
rε[φ1, φ2](x) :=

∫
R3
ψε(y)δyφ

1(x) ∧ δyφ2(x) dy ,

with δyφ(t, x) = φ(t, x − y)− φ(t, x).
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Local sign of the dissipation

Local sign of the dissipation

Alouges and Soyeur obtained some weak solutions to the LL equations by passing
to the limit, for ε→ 0, the penalized equations :

∂tmε −mε ∧ ∂tmε = 2
(

∆mε − 1
ε

(|mε|2 − 1)mε
)
.

Theorem

Let m be a weak solution to the LL equations obtained as a limit point of the
sequence mε as considered above.
Assume moreover that, up to a subsequence, for i = 1, 2, 3, ∂tmε · ∂imε

converge respectively to ∂tm · ∂im in the sense of distributions.
Then there exist two non negative distributions da,1 and ea such that
da = da,1 + ∂tea.
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Local sign of the dissipation

Commentaries

Let us stress that :(
∇mε → ∇m in L2

loc

)
⇒
(
for i = 1, 2, 3, ∂tmε · ∂imε → ∂tm · ∂im in D′

)
.

When this strong convergence holds, the proof reveals that da,1 vanishes and
that ea is only due to the possible lack of strong convergence of the energy
density eεGL := 1

2ε

(
|mε|2 − 1

)2 associated with EεGL.

It would be interesting to investigate the existence of another way to construct
weak solutions to the LL equations for which the distribution ea vanishes as well.
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Local sign of the dissipation

Thank you for your attention !
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