

Optimal control problems in coefficients for an elliptic PDE ▶ Joint work with P. Kogut (submitted 2013).

The equation

The equation

► On a regular bounded domain Ω of \mathbb{R}^N let $f \in H^{-1}(\Omega)$ and A a matrix with L^2 coefficients.

(1.1)
$$\begin{cases} -\operatorname{div}(A\nabla y) = f\\ y \in H_0^1(\Omega) \end{cases}$$

The equation

• On a regular bounded domain Ω of \mathbb{R}^N let $f \in H^{-1}(\Omega)$ and A a matrix with L^2 coefficients.

(1.1)
$$\begin{cases} -\operatorname{div}(A\nabla y) = f\\ y \in H_0^1(\Omega) \end{cases}$$

• We restrict ourselves to the case $A = A_s + A_{skew}$ where $A_{skew} \in L^2$, $A_s \in L^{\infty}$ and there exists $0 < \alpha \le \beta$ such that $\alpha \le A_s \le \beta$ in the sense of quadratic forms.

The OCP

The Optimal control problem

▶ We consider the following optimal control problem (OCP). Given $y_d \in L^2(\Omega)$.

(1.2)
$$\min_{(y,A)\in\Xi} \|y-y_d\|_{L^2}^2 + \int_{\Omega} \nabla y A_s \nabla y dx,$$

where $\boldsymbol{\Xi}$ is the admissible set to be precised later.

The Optimal control problem

• We consider the following optimal control problem (OCP). Given $y_d \in L^2(\Omega)$.

(1.2)
$$\min_{(y,A)\in\Xi} \|y-y_d\|_{L^2}^2 + \int_{\Omega} \nabla y A_s \nabla y dx,$$

where $\boldsymbol{\Xi}$ is the admissible set to be precised later.

• Actually, by a solution *y* of (1.1) with such a *A*, we mean that $y \in H_0^1(\Omega)$ satisifies

(1.3)
$$\forall \varphi \in C_0^{\infty}(\Omega) \int_{\Omega} \nabla \varphi . A \nabla y dx = \langle f, \varphi \rangle$$

► In order to deal with our type of *A*, we define

$$D(A) = \left\{ y \in H_0^1(\Omega), \, \forall \varphi \in C_0^\infty(\Omega) \\ \left| \int_{\Omega} \nabla \varphi . A_{skew} \nabla y dx \right| \le c(A_{skew}, y) \left(\int_{\Omega} ||\nabla \varphi||^2 dx \right)^{1/2} \right\}.$$

• In order to deal with our type of *A*, we define $D(A) = \left\{ y \in H_0^1(\Omega), \ \forall \varphi \in C_0^\infty(\Omega) \\ \left| \int_{\Omega} \nabla \varphi . A_{skew} \nabla y dx \right| \le c(A_{skew}, y) \left(\int_{\Omega} ||\nabla \varphi||^2 dx \right)^{1/2} \right\}.$

For $y \in D(A)$, we define

$$[y,\varphi] = \int_{\Omega} \nabla \varphi . A_{skew} \nabla y dx, \, \forall \varphi \in C_0^{\infty}(\Omega).$$

• In order to deal with our type of *A*, we define $D(A) = \left\{ y \in H_0^1(\Omega), \ \forall \varphi \in C_0^\infty(\Omega) \\ \left| \int_{\Omega} \nabla \varphi . A_{skew} \nabla y dx \right| \le c(A_{skew}, y) \left(\int_{\Omega} ||\nabla \varphi||^2 dx \right)^{1/2} \right\}.$

For $y \in D(A)$, we define

$$[y,\varphi] = \int_{\Omega} \nabla \varphi . A_{skew} \nabla y dx, \, \forall \varphi \in C_0^{\infty}(\Omega).$$

► It is clear that for $y \in D(A)$, by taking $\varphi_n \in C_0^{\infty}(\Omega)$ with $\varphi_n \to y$, one can define

$$[y,y] = \lim [y,\varphi_n]$$

• Of course, if A_{skew} is sufficiently "more" than merely L^2

[y,y]=0.

But in general, one may expect a non-vanishing quantity.

• Of course, if A_{skew} is sufficiently "more" than merely L^2

[y,y]=0.

But in general, one may expect a non-vanishing quantity.

▶ Remark that if *y* is a solution of (1.1) then $y \in D(A)$. Indeed one has

$$[y,\varphi] = -\int_{\Omega} \nabla \varphi . A_s \nabla y + \langle f,\varphi \rangle.$$

and thus

 $|[y,\varphi]| \le (\beta ||y||_{H_0^1} + ||f||_{H^{-1}}) ||\varphi||_{H_0^1}$

• Of course, if A_{skew} is sufficiently "more" than merely L^2

[y,y]=0.

But in general, one may expect a non-vanishing quantity.

▶ Remark that if *y* is a solution of (1.1) then $y \in D(A)$. Indeed one has

$$[y,\varphi] = -\int_{\Omega} \nabla \varphi . A_s \nabla y + \langle f,\varphi \rangle.$$

and thus

$$|[y,\varphi]| \le (\beta ||y||_{H_0^1} + ||f||_{H^{-1}})||\varphi||_{H_0^1}$$

• Energy estimate:
$$\int_{\Omega} \nabla y A_s \nabla y dx + [y,y] = \langle f, y \rangle$$

• Of course, if A_{skew} is sufficiently "more" than merely L^2

[y,y]=0.

But in general, one may expect a non-vanishing quantity.

▶ Remark that if *y* is a solution of (1.1) then $y \in D(A)$. Indeed one has

$$[y,\varphi] = -\int_{\Omega} \nabla \varphi . A_s \nabla y + \langle f,\varphi \rangle.$$

and thus

$$|[y,\varphi]| \le (\beta ||y||_{H^1_0} + ||f||_{H^{-1}}) ||\varphi||_{H^1_0}$$

• Energy estimate:
$$\int_{\Omega} \nabla y A_s \nabla y dx + [y, y] = \langle f, y \rangle$$

• Remark also that if $u \in D(A)$ then $\operatorname{div}(A\nabla u) \in H^{-1}(\Omega)$.

• To precise our optimal control problem we define the admissible set Ξ .

The admissible set for the matrices Ad_m consists of A such that

- $A_s \in L^{\infty}$ and $\alpha \leq A_s \leq \beta$.
- ► $a_{s,ij} \in BV(\Omega)$ and $\exists c \ge 0$ such that $\forall i, j TV(a_{s,ij}) \le c$ where

$$TV(a) = \int_{\Omega} |Da| = \sup_{\varphi \in C_0^1(\Omega, \mathbb{R}^N), \, \|\varphi\|_{\infty} \le 1} \int a \operatorname{div}(\varphi) dx$$

- ▶ There exists A^* , such that $A_{skew} \leq A^*$ (meaning that $\forall i, j, |a_{skew,ij}| \leq |a_{ij}^*|$).
- ► There exists *Q* a compact convex subset of $L^2(\Omega, Skew)$ such that $A_{skew} \in Q$ and containing 0.

- ► The admissible set Ξ for the pair (y, A) consists of those $A \in Ad_m$ and $y \in H_0^1(\Omega)$ such that (1.1) is satisfied.
- With that recall the OCP (1.2)

$$\min_{(y,A)\in\Xi} \|y-y_d\|_{L^2} + \int_{\Omega} \nabla y A_s \nabla y.$$

Note also that, due to the possibly unbounded skew-symetric part we may face non-uniqueness of solutions of (1.1), this is the main reason why the OCP is settled in (*y*, *A*).

The OCP solved ?

The OCP solved ?

- It is then quite clear that (1.2) has a solution: the compactness for the skewsymetric part is an assumption, the compactness for the symetric part comes from the assumption on the total variations of our admissible matrices.
- The main feature of our paper concerns the type of optimal solutions: namely we consider a concept of variational and non-variational solutions.
- Zhikov,....
- Many things are still not known.

In order to compute optimal solutions, one may attempt to regularize the admissible set.

- In order to compute optimal solutions, one may attempt to regularize the admissible set.
- The first idea is thus to truncate A^* at a certain level: it gives you A_k^* . You thus truncate the admissible set: Ξ_k .

- In order to compute optimal solutions, one may attempt to regularize the admissible set.
- The first idea is thus to truncate A^* at a certain level: it gives you A_k^* . You thus truncate the admissible set: Ξ_k .
- ▶ Definition: we say that (\hat{y}, \hat{A}) is a variational solution to the OCP (1.2) if it is an optimal pair which can be approximated by a sequence of optimal pairs in a suitable sense of variational limit according to a sequence of approximation $A_k^* \to A^*$ (for example the truncation as above) with $A_k^* \in L^\infty$ and $A_k^* \to A^*$ in L^2 . Essentially for the variational limit —but not solely and needs more— we assume the convergence of sequences of minimizers to some minimizers.

- In order to compute optimal solutions, one may attempt to regularize the admissible set.
- The first idea is thus to truncate A^* at a certain level: it gives you A_k^* . You thus truncate the admissible set: Ξ_k .
- ▶ Definition: we say that (\hat{y}, \hat{A}) is a variational solution to the OCP (1.2) if it is an optimal pair which can be approximated by a sequence of optimal pairs in a suitable sense of variational limit according to a sequence of approximation $A_k^* \to A^*$ (for example the truncation as above) with $A_k^* \in L^\infty$ and $A_k^* \to A^*$ in L^2 . Essentially for the variational limit —but not solely and needs more— we assume the convergence of sequences of minimizers to some minimizers.
- Theorem: If (1.2) has a variational solution (\hat{y}, \hat{A}) , then $[\hat{y}, \hat{y}] = 0$.

• Truncate suitably A^* , gives A_k^* and then (y_k, A_k) a unique minimizer of the approximated problem.

- Truncate suitably A^* , gives A_k^* and then (y_k, A_k) a unique minimizer of the approximated problem.
- Prove convergence (up to subsequence) of (y_k, A_k) to some (\hat{y}, \hat{A}) ,

- Truncate suitably A^* , gives A_k^* and then (y_k, A_k) a unique minimizer of the approximated problem.
- Prove convergence (up to subsequence) of (y_k, A_k) to some (\hat{y}, \hat{A}) ,
- Prove that \hat{y} is a solution to (1.1) with $A = \hat{A}$.

- Truncate suitably A^* , gives A_k^* and then (y_k, A_k) a unique minimizer of the approximated problem.
- Prove convergence (up to subsequence) of (y_k, A_k) to some (\hat{y}, \hat{A}) ,
- Prove that \hat{y} is a solution to (1.1) with $A = \hat{A}$.
- Use lower semi-continuity to prove that $[\hat{y}, \hat{y}] \ge 0$.

- Truncate suitably A^* , gives A_k^* and then (y_k, A_k) a unique minimizer of the approximated problem.
- Prove convergence (up to subsequence) of (y_k, A_k) to some (\hat{y}, \hat{A}) ,
- Prove that \hat{y} is a solution to (1.1) with $A = \hat{A}$.
- Use lower semi-continuity to prove that $[\hat{y}, \hat{y}] \ge 0$.
- Use the variational limit concept to improve this and obtain $[\hat{y}, \hat{y}] = 0$.

Some possible converse situations

Some possible converse situations

Do there exist variational solutions ?

Some possible converse situations

- Do there exist variational solutions ?
- ▶ We can prove that for our OCP if for all $A \in Ad_m$, for all $y \in D(A)$ one has [y, y] = 0 then there exist variational solutions (i.e. there can be approximated by the suitable procedure of, say, a trunctation).

Do there exist non variational solutions ? We thought that yes for (1.2), but not sure for the moment being.

- Do there exist non variational solutions ? We thought that yes for (1.2), but not sure for the moment being.
- We are able to construct an admissible A₀ and a y₀ ∈ D(A₀) such that [y₀, y₀] <
 0. And with that we are able to construct some (other) OCP for which a minimum is attained at some non-variational solution (A₀, y₀).

$$\begin{aligned} A_{0,skew}(x) &= \begin{pmatrix} 0 & a(x) & 0 \\ -a(x) & 0 & b(x) \\ 0 & -b(x) & 0 \end{pmatrix}, \ a(x) &= -\frac{x_1}{2||x||^2}, \ b(x) &= -\frac{x_3}{2||x||^2} \\ y_0 &= \frac{\sqrt{2\alpha}}{\pi^2} (1 - ||x||^5) \sqrt{1 - \operatorname{atan}_2(\frac{x_1}{||x||}, \frac{x_2}{||x||})} \\ &[y_0, y_0] &= -\alpha. \end{aligned}$$

where $atan_2$ is a function of 2 variables constructed with atan

- Do there exist non variational solutions ? We thought that yes for (1.2), but not sure for the moment being.
- We are able to construct an admissible A₀ and a y₀ ∈ D(A₀) such that [y₀, y₀] <
 0. And with that we are able to construct some (other) OCP for which a minimum is attained at some non-variational solution (A₀, y₀).

$$\begin{aligned} A_{0,skew}(x) &= \begin{pmatrix} 0 & a(x) & 0 \\ -a(x) & 0 & b(x) \\ 0 & -b(x) & 0 \end{pmatrix}, \ a(x) &= -\frac{x_1}{2||x||^2}, \ b(x) &= -\frac{x_3}{2||x||^2} \\ y_0 &= \frac{\sqrt{2\alpha}}{\pi^2} (1 - ||x||^5) \sqrt{1 - \operatorname{atan}_2(\frac{x_1}{||x||}, \frac{x_2}{||x||})} \\ &[y_0, y_0] &= -\alpha. \end{aligned}$$

where $atan_2$ is a function of 2 variables constructed with atan

Is there a way to approximate non variational solutions ?

▶ Under some added assumptions on *A**:

٠

$$\exists (p_1, ..., p_q) \in \Omega \quad \text{s.t.} \quad A^* \in C^{\infty}(\Omega \setminus \{p_1, ..., p_q\})$$

we can attempt to consider a way of approximating our non variational solutions.

Under some added assumptions on A*:

$$\exists (p_1, ..., p_q) \in \Omega \quad \text{s.t.} \quad A^* \in C^{\infty}(\Omega \setminus \{p_1, ..., p_q\})$$

we can attempt to consider a way of approximating our non variational solutions.

• Take q = 1. We perforate in Ω around p according to A^* of order ε (precised later). Denote Ω_{ε} the perforated domain. For technical reasons we need, at the present time, to have restrictions on this perforation for which our A_0 is not convenient.

Under some added assumptions on A*:

$$\exists (p_1, ..., p_q) \in \Omega \quad \text{s.t.} \quad A^* \in C^{\infty}(\Omega \setminus \{p_1, ..., p_q\})$$

we can attempt to consider a way of approximating our non variational solutions.

- Take q = 1. We perforate in Ω around p according to A^* of order ε (precised later). Denote Ω_{ε} the perforated domain. For technical reasons we need, at the present time, to have restrictions on this perforation for which our A_0 is not convenient.
- We consider an OCP with a fictitious control:

$$(1.4)_{\varepsilon} \qquad \min_{(y,v,A)\in\Xi_{\varepsilon}} \|y-y_d\|_{L^2(\Omega_{\varepsilon})} + \int_{\Omega_{\varepsilon}} \nabla y A_s \nabla y dx + \frac{1}{\varepsilon^{\sigma}} \|v\|_{H^{-1/2}(\Gamma_{\varepsilon})}.$$

 $\sigma\,{\rm small\,enough}$.

Our admissible set Ξ_ε takes into account the perforation and (*y*, *v*, *A*) are related by

$$\begin{pmatrix} -\operatorname{div}(A\nabla y) = f \text{ in } \Omega_{\varepsilon} \\ y \in H_0^1(\Omega_{\varepsilon}, \partial\Omega) \\ \frac{\partial y}{\partial v_A} = v \text{ on } \Gamma_{\varepsilon}.$$

With this, we have

Theorem: Assume (technical) that A^* satisfies, at first $\partial \Omega_{\varepsilon}$ lipschitz, $\begin{cases} |\partial \{x \in \Omega \sup |a_{ij}^*|(x)| \ge \varepsilon\}| = o(\varepsilon) \\ \forall A \le A^*, \ \forall y \in D(A), \ \exists c(h) \text{s.t.} | \int_{\Omega \setminus \Omega_{\varepsilon}} \nabla \varphi. A_{skew} \nabla y dx| \le c(h) \frac{\sqrt{|\Omega - \Omega_{\varepsilon}|}}{\varepsilon} ||\nabla \varphi||_{L^2(\Omega \setminus \Omega_{\varepsilon})} \end{cases}$

Assume that there are some $(y, A) \in \Xi$ such that $[y, y] \neq 0$ if $A_{skew} = A^*$, then (1.2) is the variational limit on $(1.4)_{\varepsilon}$.

► Theorem: Assume (technical) that A^* satisfies, at first $\partial \Omega_{\varepsilon}$ lipschitz, $\begin{cases} |\partial \{x \in \Omega \sup |a_{ij}^*|(x)| \ge \varepsilon\}| = o(\varepsilon) \\ \forall A \le A^*, \forall y \in D(A), \exists c(h) \text{s.t.} | \int_{\Omega \setminus \Omega_{\varepsilon}} \nabla \varphi . A_{skew} \nabla y dx| \le c(h) \frac{\sqrt{|\Omega - \Omega_{\varepsilon}|}}{\varepsilon} ||\nabla \varphi||_{L^2(\Omega \setminus \Omega_{\varepsilon})} \end{cases}$

Assume that there are some $(y, A) \in \Xi$ such that $[y, y] \neq 0$ if $A_{skew} = A^*$, then (1.2) is the variational limit on $(1.4)_{\varepsilon}$.

 And if we require stronger assumptions, we can also pass to the limit in optimality conditions.

Some references

Some references

Buttazzo & Kogut, Casas & Fernandez, Fanjiang & Papanicolau, Fursikov, Kogut & Leugering, Ioffe & Tichomirov, Jin & Mazya & VanSchaftinger, Serrin, Zhikov,...

Some further extensions or questions

- Necessary and sufficient conditions in order to understand which solutions you're going to obtain ?
- ▶ What happens if *A*_s has also some degeneracy, work in progress (but just started) with Peter.
- What are the fine structures of D(A) and [.,.] on D(A)?
- Does it make sense to study the heat equation with such A and initial data close to non-variational solutions ?

Thank you for your attention

Variational convergence.

- We recall some consequences of the variational convergence (see the book of Kogut-Leugering).
- Theorem: Assume that we have functionals $I_0 I_{\varepsilon}$ defined on variable Banach spaces (we need to speak of convergence in variable spaces).
- Some Ξ_0 and Ξ_{ε} admissible sets.
- We assume that $\inf_{\Xi_{\varepsilon}} I_{\varepsilon}$ and $\inf_{\Xi_0} I_0$ are achieved.
- ▶ Then if we have variational convergence of this problems, then compact sequences u_{ε} of minimizers of I_{ε} with respect to ε converge up to subsequence to some optimal solution of $\inf_{\Xi_0} I_0$ and $I_{\varepsilon}(u_{\varepsilon}) \rightarrow I_0(u_0)$.