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The equation

I On a regular bounded domain Ω of RN let f ∈ H−1(Ω) and A a matrix with L2

coefficients.

(1.1)
{
−div(A∇y) = f
y ∈ H1

0(Ω)

I We restrict ourselves to the case A = As + Askew where Askew ∈ L2, As ∈ L∞ and
there exists 0 < α ≤ β such that α ≤ As ≤ β in the sense of quadratic forms.
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I We consider the following optimal control problem (OCP). Given yd ∈ L2(Ω).

(1.2) min
(y,A)∈Ξ

‖y − yd‖
2
L2 +

∫
Ω

∇y.As∇ydx,

where Ξ is the admissible set to be precised later.
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I We consider the following optimal control problem (OCP). Given yd ∈ L2(Ω).

(1.2) min
(y,A)∈Ξ

‖y − yd‖
2
L2 +

∫
Ω

∇y.As∇ydx,

where Ξ is the admissible set to be precised later.

I Actually, by a solution y of (1.1)with such a A, we mean that y ∈ H1
0(Ω) satisi-

fies

(1.3) ∀ϕ ∈ C∞0 (Ω)
∫

Ω

∇ϕ.A∇ydx = 〈 f , ϕ〉
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I In order to deal with our type of A, we define

D(A) =
{
y ∈ H1

0(Ω), ∀ϕ ∈ C∞0 (Ω)∣∣∣∣∣∫
Ω
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∣∣∣∣∣ ≤ c(Askew, y)
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I In order to deal with our type of A, we define

D(A) =
{
y ∈ H1

0(Ω), ∀ϕ ∈ C∞0 (Ω)∣∣∣∣∣∫
Ω

∇ϕ.Askew∇ydx
∣∣∣∣∣ ≤ c(Askew, y)
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 .
I For y ∈ D(A), we define[

y, ϕ
]

=

∫
Ω

∇ϕ.Askew∇ydx, ∀ϕ ∈ C∞0 (Ω).

I It is clear that for y ∈ D(A), by taking ϕn ∈ C∞0 (Ω) with ϕn → y, one can define[
y, y

]
= lim [y, ϕn]
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Indeed one has [
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The domain D(A)

I Of course, if Askew is sufficiently "more" than merely L2[
y, y

]
= 0.

But in general, one may expect a non-vanishing quantity.

I Remark that if y is a solution of (1.1) then y ∈ D(A).
Indeed one has [

y, ϕ
]

= −

∫
Ω

∇ϕ.As∇y + 〈 f , ϕ〉.

and thus

|
[
y, ϕ

]
| ≤ (β‖y‖H1

0
+ ‖ f ‖H−1)‖ϕ‖H1

0

I Energy estimate:
∫

Ω

∇y.As∇ydx + [y, y] =< f , y >

I Remark also that if u ∈ D(A) then div(A∇u) ∈ H−1(Ω).
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I To precise our optimal control problem we define the admissible set Ξ.



The OCP continued

The admissible set for the matrices Adm consists of A such that

I As ∈ L∞ and α ≤ As ≤ β.

I as,i j ∈ BV(Ω) and ∃c ≥ 0 such that ∀i, j TV(as,i j) ≤ c where

TV(a) =

∫
Ω

|Da| = sup
ϕ∈C1

0(Ω,RN), ‖ϕ‖∞≤1

∫
adiv(ϕ)dx

I There exists A∗, such that Askew � A∗ (meaning that ∀i, j, |askew,i j| ≤ |a∗i j|).

I There exists Q a compact convex subset of L2(Ω,Skew) such that Askew ∈ Q and
containing 0.



The OCP continued

I The admissible setΞ for the pair (y,A) consists of thoseA ∈ Adm and y ∈ H1
0(Ω)

such that (1.1) is satisfied.

I With that recall the OCP (1.2)

min
(y,A)∈Ξ

‖y − yd‖L2 +

∫
Ω

∇y.As∇y.

I Note also that, due to the possibly unbounded skew-symetric partwemay face
non-uniqueness of solutions of (1.1), this is the main reason why the OCP is
settled in (y,A).
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The OCP solved ?

I It is then quite clear that (1.2) has a solution: the compactness for the skew-
symetric part is an assumption, the compactness for the symetric part comes
from the assumption on the total variations of our admissible matrices.

I The main feature of our paper concerns the type of optimal solutions: namely
we consider a concept of variational and non-variational solutions.

I Zhikov,....

I Many things are still not known.
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I Definition: we say that (ŷ, Â) is a variational solution to the OCP (1.2) if it is
an optimal pair which can be approximated by a sequence of optimal pairs in
a suitable sense of variational limit according to a sequence of approximation
A∗k → A∗ (for example the truncation as above) with A∗k ∈ L∞ and A∗k → A∗ in
L2. Essentially for the variational limit —but not solely and needs more— we
assume the convergence of sequences of minimizers to some minimizers.



The variational solutions.

I In order to compute optimal solutions, one may attempt to regularize the ad-
missible set.

I The first idea is thus to truncate A∗ at a certain level: it gives you A∗k. You thus
truncate the admissible set: Ξk.

I Definition: we say that (ŷ, Â) is a variational solution to the OCP (1.2) if it is
an optimal pair which can be approximated by a sequence of optimal pairs in
a suitable sense of variational limit according to a sequence of approximation
A∗k → A∗ (for example the truncation as above) with A∗k ∈ L∞ and A∗k → A∗ in
L2. Essentially for the variational limit —but not solely and needs more— we
assume the convergence of sequences of minimizers to some minimizers.

I Theorem: If (1.2) has a variational solution (ŷ, Â), then [ŷ, ŷ] = 0.
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I Use lower semi-continuity to prove that [ŷ, ŷ] ≥ 0.



The variational solutions: ideas of proof

I Truncate suitably A∗, gives A∗k and then (yk,Ak) a unique minimizer of the ap-
proximated problem.

I Prove convergence (up to subsequence) of (yk,Ak) to some (ŷ, Â),

I Prove that ŷ is a solution to (1.1)with A = Â.

I Use lower semi-continuity to prove that [ŷ, ŷ] ≥ 0.

I Use the variational limit concept to improve this and obtain [ŷ, ŷ] = 0.
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Some possible converse situations

I Do there exist variational solutions ?

I We can prove that for our OCP if for all A ∈ Adm, for all y ∈ D(A) one has
[y, y] = 0 then there exist variational solutions (i.e. there can be approximated
by the suitable procedure of, say, a trunctation).
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not sure for the moment being.
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I Do there exist non variational solutions ? We thought that yes for (1.2), but
not sure for the moment being.

I We are able to construct an admissible A0 and a y0 ∈ D(A0) such that [y0, y0] <
0. And with that we are able to construct some (other) OCP for which a min-
imum is attained at some non-variational solution (A0, y0).

A0,skew(x) =


0 a(x) 0
−a(x) 0 b(x)

0 −b(x) 0

 , a(x) = −
x1

2‖x‖2
, b(x) = −

x3

2‖x‖2

y0 =

√
2α
π2 (1 − ‖x‖5)

√
1 − atan2(

x1

‖x‖
,

x2

‖x‖
)[

y0, y0
]

= −α.

where atan2 is a function of 2 variables constructed with atan
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I Is there a way to approximate non variational solutions ?
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I Under some added assumptions on A∗:

∃(p1, ..., pq) ∈ Ω s.t. A∗ ∈ C∞(Ω \ {p1, ..., pq})
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later). Denote Ωε the perforated domain. For technical reasons we need, at
the present time, to have restrictions on this perforation for which our A0 is
not convenient.



Non variational solutions

I Under some added assumptions on A∗:

∃(p1, ..., pq) ∈ Ω s.t. A∗ ∈ C∞(Ω \ {p1, ..., pq})

we can attempt to consider a way of approximating our non variational solu-
tions.
.

I Take q = 1. We perforate in Ω around p according to A∗ of order ε (precised
later). Denote Ωε the perforated domain. For technical reasons we need, at
the present time, to have restrictions on this perforation for which our A0 is
not convenient.

I We consider an OCP with a fictitious control:

(1.4)ε min
(y,v,A)∈Ξε

‖y − yd‖L2(Ωε) +

∫
Ωε

∇y.As∇ydx +
1
εσ
‖v‖H−1/2(Γε).

σ small enough .



Non variational solutions

I Our admissible set Ξε takes into account the perforation and (y, v,A) are re-
lated by 

−div(A∇y) = f in Ωε

y ∈ H1
0(Ωε, ∂Ω)

∂y
∂νA

= v on Γε.

With this, we have



Non variational solutions

I Theorem:
Assume (technical) that A∗ satisfies, at first ∂Ωε lipschitz,
|∂{x ∈ Ω sup |a∗i j|(x)| ≥ ε}| = o(ε)

∀A � A∗, ∀y ∈ D(A), ∃c(h)s.t.|
∫

Ω\Ωε
∇ϕ.Askew∇ydx| ≤ c(h)

√
|Ω −Ωε|

ε
‖∇ϕ‖L2(Ω\Ωε)

Assume that there are some (y,A) ∈ Ξ such that [y, y] 6= 0 if Askew = A∗, then
(1.2) is the variational limit on (1.4)ε.



Non variational solutions

I Theorem:
Assume (technical) that A∗ satisfies, at first ∂Ωε lipschitz,
|∂{x ∈ Ω sup |a∗i j|(x)| ≥ ε}| = o(ε)

∀A � A∗, ∀y ∈ D(A), ∃c(h)s.t.|
∫

Ω\Ωε
∇ϕ.Askew∇ydx| ≤ c(h)

√
|Ω −Ωε|

ε
‖∇ϕ‖L2(Ω\Ωε)

Assume that there are some (y,A) ∈ Ξ such that [y, y] 6= 0 if Askew = A∗, then
(1.2) is the variational limit on (1.4)ε.

I And if we require stronger assumptions, we can also pass to the limit in opti-
mality conditions.
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I Buttazzo & Kogut, Casas & Fernandez, Fanjiang & Papanicolau, Fursikov,
Kogut&Leugering, Ioffe&Tichomirov, Jin&Mazya&VanSchaftinger, Serrin,
Zhikov,...



Some further extensions or questions

I Necessary and sufficient conditions in order to understand which solutions
you’re going to obtain ?

I What happens if As has also some degeneracy, work in progress (but just
started) with Peter.

I What are the fine structures of D(A) and [., .] on D(A) ?

I Does it make sense to study the heat equation with such A and initial data
close to non-variational solutions ?



Thank you for your attention



Variational convergence.

I We recall some consequences of the variational convergence (see the book of
Kogut-Leugering).

I Theorem: Assume that we have functionals I0 Iε defined on variable Banach
spaces (we need to speak of convergence in variable spaces).

I Some Ξ0 and Ξε admissible sets.

I We assume that inf
Ξε

Iε and inf
Ξ0

I0 are achieved.

I Then if we have variational convergence of this problems, then compact se-
quences uε of minimizers of Iε with respect to ε converge up to subsequence
to some optimal solution of infΞ0 I0 and Iε(uε)→ I0(u0).


