
Approximation of the controls for the beam
equation

Sorin Micu

University of Craiova (Romania)

Workshop on Partial Differential Equations, Optimal
Design and Numerics

Benasque, August 28, 2013

Joint work with Florin Bugariu and Ionel Rovenţa



Controlled beam equation

Given any T > 0 and initial data (u0, u1) ∈ H1
0 (0, π)×H−1(0, π),

the exact controllability in time T of the linear beam equation with
hinged ends,

u′′(t, x) + uxxxx(t, x) = 0, x ∈ (0, π), t > 0

u(t, 0) = u(t, π) = uxx(t, 0) = 0, t > 0

uxx(t, π) = v(t), t > 0

u(0, x) = u0(x), u′(0, x) = u1(x), x ∈ (0, π)

(1)

consists of finding a scalar function v ∈ L2(0, T ), called control,
such that the corresponding solution (u, u′) of (1) verifies

u(T, · ) = u′(T, · ) = 0. (2)



(Many) methods to study the controllability

Several approaches are available for the study of a controllability
problem:

Moment theory

Direct methods

Transmutation methods

Uniform stabilization

Optimization methods (Hilbert Uniqueness Method)

Multipliers
Carleman estimates
Microlocal Analysis
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Fattorini H. O. and Russell D. L., Exact controllability theorems for linear

parabolic equations in one space dimension, Arch. Rat. Mech. Anal., 4

(1971), 272-292.



Observability inequality

Equation (1) is exactly controllable in time T if the following
observability inequality holds:

‖(ϕ(0), ϕ′(0))‖2H1
0×H−1 ≤ C

∫ T

0
|ϕx(t, π)|2dt, (3)

for any (ϕ0, ϕ1) ∈ H1
0 (0, π)×H−1(0, π) and (ϕ,ϕ′) solution of

the adjoint equation
ϕ′′(t, x) + ϕxxxx(t, x) = 0, x ∈ (0, π), t > 0

ϕ(t, 0) = ϕ(t, π) = ϕxx(t, 0) = ϕxx(t, π) = 0, t > 0

ϕ(T, x) = ϕ0(x), ϕ′(T, x) = ϕ1(x), x ∈ (0, π).

(4)

Moreover, for any initial data (u0, u1) ∈ H1
0 (0, π)×H−1(0, π)

there exists a control v ∈ L2(0, T ) with the property

‖v‖L2 ≤
√
C‖(u0, u1)‖H1

0×H−1 . (5)



An old friend: Ingham’s inequality

Observability inequality (3) is equivalent to inequality of the form

∑
n∈Z∗

|αn|2 ≤ C(T )

∫ T
2

−T
2

∣∣∣∣∣∑
n∈Z∗

αne
νn t

∣∣∣∣∣
2

dt, (αn)n∈Z∗ ∈ `2. (6)

Ingham’s inequality

For any T > 2π
γ∞

, γ∞ = lim inf
n→∞

|νn+1 − νn|, inequality (6) holds.

A. E. Ingham, Some trigonometric inequalities with applications to the

theory of series, Math. Zeits., 41 (1936), 367-379.

J. Ball and M. Slemrod, Nonharmonic Fourier series and the stabilization

of distributed semilinear control systems, Comm. Pure Appl. Math., 32

(1979), 555-587.

J. P. Kahane: Pseudo-Périodicité et Séries de Fourier Lacunaires, Ann.

Sci. Ecole Norm. Super. 37, 93-95 (1962).



Observability inequality

In our particular case

γ∞ = lim inf
n→∞

|νn+1 − νn| =∞.

Ingham’s inequality implies that the observability inequality (3) is
verified for any T > 0.

Consequently, given any T > 0, there exists a control v ∈ L2(0, T )
for each (u0, u1) ∈ H−1(0, π)×H−1(0, π).

The control function v is not unique.



Moment problem for the beam equation

The null-controllability of the beam equation is equivalent to solve
the following moment problem:

For any (u0, u1) =
(∑∞

n=1 a
0
n sin(nx),

∑∞
n=1 a

1
n sin(nx)

)
, find

v ∈ L2 (0, T ) such that∫ T
2

−T
2

v

(
t+

T

2

)
etνndt =

(−1)ne−
T
2
νn

√
2nπ

(
νna

0
n − a1n

)
(n ∈ Z∗),

(7)
where νn = i n2 sgn(n) are the eigenvalues of the unbounded
skew-adjoint differential operator corresponding to (1).

A solution v of the moment problem may be constructed by means
of a biorthogonal family to the sequence (eνn t)n∈Z∗ .



Moment problem for the beam equation

Definition

A family of functions (φm)m∈Z∗ ⊂ L2
(
−T

2 ,
T
2

)
with the property∫ T

2

−T
2

φm(t)eνn tdt = δmn ∀m,n ∈ Z∗, (8)

is called a biorthogonal sequence to (eνn t)n∈Z∗ in L2
(
−T

2 ,
T
2

)
.

Once we have a biorthogonal sequence to (eνn t)n∈Z∗ , a “formal”
solution of the moment problem is given by

v(t) =
∑
n∈Z∗

(−1)ne−
T
2
νn

√
2nπ

(
νna

0
n − a1n

)
φn

(
t− T

2

)
. (9)



Moment problem for the beam equation

Definition

A family of functions (φm)m∈Z∗ ⊂ L2
(
−T

2 ,
T
2

)
with the property∫ T

2

−T
2

φm(t)eνn tdt = δmn ∀m,n ∈ Z∗, (8)

is called a biorthogonal sequence to (eνn t)n∈Z∗ in L2
(
−T

2 ,
T
2

)
.

Once we have a biorthogonal sequence to (eνn t)n∈Z∗ , a “formal”
solution of the moment problem is given by

v(t) =
∑
n∈Z∗

(−1)ne−
T
2
νn

√
2nπ

(
νna

0
n − a1n

)
φn

(
t− T

2

)
. (9)



Ingham’s inequality and the existence of a biorthogonal

Consider a Hilbert space H and a family (fn)n∈Z∗ ⊂ H such that

C1

∑
n∈Z∗

|an|2 ≤

∥∥∥∥∥∑
n∈Z∗

anfn

∥∥∥∥∥
2

, (an)n∈Z∗ ∈ `2. (10)

Inequality (10) implies the existence of a biorthogonal sequence to
the family (fn)n∈Z∗ .

(fn)n∈Z∗ is minimal i. e.

fm /∈ Span
{

(fn)n∈Z∗\{m}
}

(m ∈ Z∗).

Apply Hahn-Banach Theorem to {fm} and

Span
{

(fn)n∈Z∗\{m}
}

There exists φm ∈ H such that

(φm, fm) = 1 and (φm, fn) = 0 for any n 6= m.



No Ingham?

If we are in a context in which no Ingham’s type inequality is
available?

We can take the inverse way:

Construction of the biorthogonal
R. E. A. C. Paley and N. Wiener, Fourier Transforms in Complex

Domains, AMS Colloq. Publ., Vol. 19, Amer. Math. Soc.,

New-York, 1934.

Evaluation of its norm

Construction of the control
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Finite differences for the beam equation

N ∈ N∗, h = π
N+1 , xj = jh, 0 ≤ j ≤ N + 1,

x−1 = −h, xN+2 = π + h.
u′′j (t) = −uj+2(t)−4uj+1+6uj(t)−4uj−1(t)+uj−2(t)

h4
, t > 0

u0(t) = uN+1(t) = 0, u−1(t) = −u1(t), t > 0
uN+2 = −uN−1 + h2vh(t), t > 0
uj(0) = u0j , u

′
j(0) = u1j , 1 ≤ j ≤ N.

(11)

Discrete controllability problem: given T > 0 and
(U0

h , U
1
h) = (u0j , u

1
j )1≤j≤N ∈ C2N , there exists a control function

vh ∈ L2(0, T ) such that the solution u of (11) satisfies

uj(T ) = u′j(T ) = 0, ∀j = 1, 2, ..., N. (12)

System (11) consists of N linear differential equations with N
unknowns u1, u2, ..., uN .
uj(t) ≈ u(t, xj) if (U0

h , U
1
h) ≈ (u0, u1).



Discrete controls

Existence of the discrete control vh.

Boundedness of the sequence (vh)h>0 in L2(0, T ).

Convergence of the sequence (vh)h>0 to a control v of the
beam equation (1).

L. LEON and E. ZUAZUA: Boundary controllability of the

finite-difference space semi-discretizations of the beam equation.

ESAIM:COCV, A Tribute to Jacques- Louis Lions, Tome 2, 2002, pp.

827-862.
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Equivalent vectorial form

System (11) is equivalent to
U ′′h (t) + (Ah)2Uh(t) = Fh(t) t ∈ (0, T )
Uh(0) = U0

h

U ′h(0) = U1
h ,

(13)

Ah =
1

h2


2 −1 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 2 −1
0 0 0 0 . . . −1 2

 , Uh(t) =


u1(t)
u2(t)

...
uN (t)



Fh(t) =
1

h2


0
0
...
0

−vh(t)

 , U0
h =


u01
u02
...
u0N

 , U1
h =


u11
u12
...
u1N

 .



Discrete observability inequality


W ′′h (t) +A2

hWh(t) = 0 t ∈ (0, T )
Wh(T ) = W 0

h ∈ CN
W ′h(T ) = W 1

h ∈ CN .
(14)

The energy of (14) is defined by

Eh(t) =
1

2

(
〈AhUh(t), Uh(t)〉+ 〈A−1h U ′h(t), U ′h(t)〉

)
. (15)

The exact controllability in time T of (11) holds if the following
discrete observability inequality is true

Eh(t) ≤ C
∫ T

0

∣∣∣∣WhN (t)

h

∣∣∣∣2 dt, (W 0
h ,W

1
h ) ∈ C2N (16)

C = C(T, h)



One or two problems

Eigenvalues: νn = i sgn (n)µn,

µn =
4

h2
sin2

(
nπh

2

)
, 1 ≤ |n| ≤ N.

Eigenvectors form an orthogonal basis in C2N :

φn =
1√
2µn

 ϕn

−νn ϕn

 , ϕn =
√

2


sin(nhπ)
sin(2nπ)

...
sin(Nnπ)

 , 1 ≤ |n| ≤ N.

The observability constant is not uniform in h:

(W 0
h ,W

1
h ) = φN ⇒ C(T, h) =

1

T cos2
(
Nπh
2

) ≈ 1

Th2
.



Cures (L. Leon and E. Zuazua, COCV 2002)

Control the projection of the solution over the space
Span{φn : 1 ≤ |n| ≤ γN}, with γ ∈ (0, 1).

∑
1≤|n|≤γN

|αn|2 ≤ C
∫ T

2

−T2

∣∣∣∣∣∣
∑

1≤|n|≤γN

αne
νn t

∣∣∣∣∣∣
2

dt. (17)

Introduce a new control which vanishes in the limit

Eh(t) ≤ C

[∫ T

0

∣∣∣∣WhN (t)

h

∣∣∣∣2 dt+ h2
∫ T

0

∣∣∣∣W ′hN (t)

h

∣∣∣∣2 dt
]
. (18)

C = C(T )⇒ uniform controllability



Numerical vanishing viscosity

Instead of (13) we consider the system
U ′′h (t) + (Ah)2Uh(t) + εAhU

′
h(t) = Fh(t) t ∈ (0, T )

Uh(0) = U0
h

U ′h(0) = U1
h ,

(19)

ε = ε(h), limh→0 ε = 0

If Fh = 0,
dEh
dt

(t) = −ε〈AhU ′h(t), U ′h(t)〉 ≤ 0

The term εAhU
′
h(t) represents a numerical vanishing viscosity.

Can we obtain the uniform controllability in any T > 0
(without projection or additional controls) using this new
discrete scheme?
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Spectral analysis. Good news but no Ingham.

Eigenvalues: λn = 1
2

(
ε+ i sgn (n)

√
4− ε2

)
µ|n|, 1 ≤ |n| ≤ N.

Eigenvectors:

φn =
1√
2µn

 ϕn

−λn ϕn

 , ϕn =
√

2


sin(nhπ)
sin(2nπ)

...
sin(Nnπ)

 , 1 ≤ |n| ≤ N.

If (W 0
h ,W

1
h ) = φN we obtain that

C(T, h) =

∫ T
0

∣∣∣WhN (t)
h

∣∣∣2 dt
‖(Wh(0),W ′h(0))‖2

≈ 1

cos2
(
Nπh
2

) <(λN )

e2T<(λN ) − 1
.

To ensure the uniform observability of these initial data we need

ε > C ln

(
1

h

)
h2

⇒ <(λN ) > C ln

(
1

h

)
.
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Discrete moments problem

Theorem

Let T > 0 and ε > 0. System (13) is null-controllable in time T if
and only if, for any initial datum (U0

h , U
1
h) ∈ C2N of form

(U0
h , U

1
h) =

 N∑
j=1

a0jhϕ
j ,

N∑
j=1

a1jhϕ
j

 , (20)

the exists a control vh ∈ L2(0, T ) such that∫ T

0

vh(t)eλntdt =
(−1)nh√

2 sin(|n|πh)

(
−a1|n|h + (λn − εµ|n|)a0|n|h

)
, (21)

for any n ∈ Z∗ such that |n| ≤ N .



Biorthogonal family

If (θm)1≤|m|≤N ⊂ L2
(
−T

2 ,
T
2

)
is a biorthogonal sequence to the

family of exponential functions
(
eλnt

)
1≤|n|≤N in L2

(
−T

2 ,
T
2

)
then

a control of (13) will be given by

vh(t) =
∑

1≤|n|≤N

(−1)nhe−λn
T
2

√
2 sin(|n|πh)

(
−a1|n|h + (λn − εµ|n|)a0|n|h

)
θn

(
t− T

2

)
.

Now the main task in to show that there exists a biorthogonal
sequence (θm)1≤|m|≤N and to evaluate its L2−norm in order to
estimate the right hand side sum.



Construction of a biorthogonal (I) - The big picture

Suppose that (θm)1≤|m|≤N is a biorthogonal sequence to the family

of exponential functions
(
eλnt

)
1≤|n|≤N in L2

(
−T

2 ,
T
2

)
and define

Ψm(z) =

∫ T
2

−T
2

θm(t)e−i tzdt.

Ψm(iλn) = δnm

Ψm is an entire function of exponential type T
2

Ψn ∈ L2(R)

Paley-Wiener Theorem ensures that the reciprocal is true and gives
a constructive way to obtain a biorthogonal sequence.

Ψm(z) = Pm(z)× Em(z) =
∏
n6=m

iλn − z
iλn − iλm

× Em(z).

Pm and Mm should have small exponential type and good behavior
on the real axis.



Construction of a biorthogonal (II) - A small picture

(ξ1l )l is a biorthogonal to family F1 which is finite.

(ξ2k)k is a biorthogonal to family F2 with good gap properties.

A biorthogonal (θm)m to full family F1 ∪ F2 can be

constructed by using the Fourier transforms θ̂1k and θ̂2l .
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Construction of a biorthogonal (III) - The model

In the large family F2 we introduce new values. Why?

Ψm(z) = Pm(z)× Em(z) =
∏
n6=m

iλn − z
iλn − iλm

× Em(z)

Pm and Mm should have small exponential type and good behavior
on the real axis.

F (z) =
sin(δz)

δz
=
∏
n∈Z∗

(
1− δz

nπ

)

F has small exponential type if δ is small.

F is L2 on the real axis.

The last property is not true if we take a finite part of the
product.

We have added new values to obtain a product Pm similar to F .
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Construction of a biorthogonal (IV): The End

Theorem

Let T > 0. There exist two positive constants h0 and ε0 such that
for any h ∈ (0, h0) and ε ∈

(
c0h

2 ln
(
1
h

)
, c0h

)
there exists a

biorthogonal (θm)m to (eλnt)n and two constants α < T and
C = C(T ) > 0 (independent of ε and h) such that

∫ T
2

−T2

∣∣∣∣∣∑
m

αmθm(t)

∣∣∣∣∣
2

dt ≤ C(T )
∑
m

|αm|2eα|<(λm)|, (22)

for any finite sequence (αm)m.

Since

vh(t) =
∑

1≤|n|≤N

(−1)nhe−
Tλn

2

√
2 sin(|n|πh)

(
−a1|n|h + (λn − εµ|n|)a0|n|h

)
θn

(
t− T

2

)
.

we obtain immediately from (22) the uniform boundedness (in h)
of the family of controls (vh)h>0.
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Sorry! One last remark: return to Ingham’s inequality

∫ T
2

−T2

∣∣∣∣∣∑
m

αmθm(t)

∣∣∣∣∣
2

dt ≤ C(T )
∑
m

|αm|2eα|<(λm)|.

∑
m

|αm|2e−α|<(λm)| =

∫ T
2

−T2

(∑
m

αmθm(t)e−α|<(λn)|

)(∑
m

αmeλmt

)
dt ≤

≤

√√√√∫ T
2

−T2

∣∣∣∣∣∑
m

αme−α|<(λn)|θm(t)

∣∣∣∣∣
2

dt

√√√√∫ T
2

−T2

∣∣∣∣∣∑
m

αmeλmt

∣∣∣∣∣
2

dt ≤

≤
√
C(T )

∑
m

|αm|2e−2α|<(λn)|eα|<(λn)|

√√√√∫ T
2

−T2

∣∣∣∣∣∑
m

αmeλmt

∣∣∣∣∣
2

dt.

∑
m

|αm|2e−α|<(λm)| ≤ C(T )

∫ T
2

−T2

∣∣∣∣∣∑
m

αme
λmt

∣∣∣∣∣
2

dt.



Now is The End!

Thank you very much for your attention!


