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For every ¢ > 0, we consider the thin domain
Q. =uw xew cRN, >0,
with o’ C R¥, w” € RVN=k smooth enough domains (N > 2,

0 < k < N), and a solution (ug, p:) € H}(Q:)3 x L2(€.) of the
Navier-Stokes problem

—puAu: +Vp: + (U - V)ue = £- in Q.
div u. =0in Q.

+ boundary conditions

Asymptotic behavior of (u., p:) as € tends to zero?



The main result

To estimate the pressure, we often use the well known inequality
o= oy [, Pl < SIVRLusaye (P)

for every p. € L?(.), e > 0.

We improve this inequality by proving the following result
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Theorem 1

For every ¢ > 0 and p. € L?(S.) there exist p? € H'(w') (it does
not depend on x") and p! € L2(Q.) satisfying

pe =pl+pl inQe,

eIV P2l 2y + P22y < ClIVP: |l g-1(0.)w,

with C a positive constant independent of p. and ¢.

(we write x € RN as x = (x/, x”") with x’ € Rk, x” € RN=K)



Theorem 1 + Poincaré-Wirtinger's inequality give

Corollary

For every ¢ > 0 and p. € L?(S.) there exist p° € H*(w) (it does
not depend on x") and p} € L2(Q.) satisfying

1

Pa_m 0 Pst=5g+ﬁgl in S,
€ e

~ C ~
182l ey < VPl 1oy, 1B 2(0.) < CIVPell -1y

with C a positive constant independent of p. and €.

We decompose p. as the sum of a term of order e~1, which is not
only in L2 but in H*, plus a term in L2 of order 1 with respect

IV Pell 10y



Remark : Let us consider a sequence p. € L%(Q.) satisfying

1
m‘/ﬂ Pe dx = 0, ||VPEHH*1(QE)N < C, Ve > 0.
€ £

Then, we have
<

IPllp@.y < <5 Ve >0.

Let v be a smooth enough function and let us define the sequence

Observe that  [|ve[|;20.) < Ce  and

[div ve|[ 2.y = [ledivv + divnv2qy < C.



We can not pass to the limit in < Vp., v. > by using (P),

<Vpe,ve >= —/ p: div v.dx
Q.

because we would need [|div ve|;2(q,) < Ce.
However if we use Theorem 1

< Vpe, Ve >=/ Vpgvgdx—/ pgdivvedx
Qe Q.

we would need [|vc||;2(q.) < Ce, [|div vl 20,y < C.



Remark : We can deal with more general thin domains Q.. For
example, we can consider thin domains with rough boundary as

Q. = {(Xl,Xz,Xa) cwxR: -6V <)<1,X2> < X3 <5}.

re re

In a recent paper we have studied the asymptotic behavior of

([ —pAu. + (v - V)u. +Vp. = £ in Q.
divu: =0 in g,

uv = 0, T (,ll@al:j + Zug> =0 on rEa
u: =0 on 9\ I,

where TE=¢— (v,

Vé € R3, a.e. on 09,

/
Fs—{x€R3: XIGW,X3_—(55W<X>}

re



when §. < r. < e. The asymptotic behavior depends on the value

de

. 1/2

A =lims_g 32¢ /
re

@ If A = oo, then the fluid behaves as if we also imposed an
adherence condition on [..

e If A € (0,+00), then the roughness is not strong enough to
give the adherence condition in the limit but it is enough to
obtain a new friction term in the limit.

@ If A = 0 the roughness is so weak that the fluid behaves as if
the rough wall was plane.

D. Bresch, D. Bucur, E. Feireisl, E. Fernandez-Cara, W. Jager, A.
Mikelic, N. Neésova, J. Simon ...



Korn's inequality

It is well known that from inequality

C
< =

1
Ip- = a7 Jo, P M@ < ZIVPlliagr, - (P)

Vp. € L2(Q.), € > 0,
we can prove Korn's inequality in €2..

Analogously, from Theorem 1 we can deduce the following result



For every ¢ > 0 and u. € H*(Q:)N there exist

e 3. ¢ RV, B\E e RN*N skew-symmetric
- UQ’ c H2(w/)N—k' = Hl(Qa)N, 65 c Hl(w/)(N—k)x(N—k)
skew-symmetric
satisfying

"

DT (X)

~ = g
1/\// / T x"
- C -
S0(¢) + Culx')

+we(x), (1)
1821 g yw—+ < Clle(ue)llzaoymxn,
I1Cell g yw—rxen—n < Clle(ue)ll 2 ynxn,

Wellwra v < Clle(ue)ll 2. ymxw




A simple application: a thin beam in R3

We consider
Q. =(0,1) x ew”

and we denote
- ={0,1} x &S.

In Q° we consider the elasticity problem

—divAe(u:) = F.  in Q.
Ae(u:)y =0 ondQ\T. (E)

ue=0 onTl*®
where F. € [2(Q.) and A € L(R3*3) satisfies

AL €= mlgP, vEeRPS



F. Murat, A. Sili (1999)

For U. € H'((0,1) x w)3 defined by
Ue1(y1, y2, y3) = U 1(y1, €2, €y3),
Ue2(y1, y2,¥3) = etz 2(y1,€y2,€y3)
Us3(y1,¥2,y3) = cu:3(yv1,€y2,€¥3)

there exist a Bernouilli-Navier displacement U, a rotation V/, and a
displacement orthogonal to the rigid displacements W, satisfying a
system of PDE (limit problem) and such that

Us(y) ~ U(y) +eV(y) +EW(y)



F. Murat, A. Sili (1999)

For U. € HY((0,1) x w)? defined by
Ue1(y1s y2, ¥3) = te1(y1,ey2,€y3),
Ue2(y1,¥2,y3) = cu:2(y1,€y2,€¥3)
U 3(y1, y2,3) = cuz3(y1,€y2,€y3)

or equivalently, there exist ¢; € HY(0,1), (2, (3 € H?(0,1),
c € HY(0,1), vi, ws, w3 € L?(0,1; HY(w")) such that

Uea(y) ~ G0 — jf(yl)yz - jﬁ(yl)ya +euly),
U=2(y) ~ Gy1) + ec(y)ys + e2wa(y),

(y) ~ G(n) — ec(n)y2 + 2ws(y),

w



In the original variables (x1 = y1, x2 = €y», x3 = €y3) this reads as

dCQ X2 dC3 X3 X2 X3
Ue1(x) ~ Ci(x1) 7( x1)— dT/l( )7+€V1(X17?7;)7
1 X0 X
u:2(x) ~ ZGala) + ca) 2 + ewala, 2, 2),
1 X2 X2 X3

ug 3(x) ~ —(3(x1) — c(x +ews(x1, —, —),
e3(x) ~ ZG0a) — < 1) s(a, =5 7)
The main difficulty to prove Murat, Sili's result is that we only

have a good bound for the symmetric part of the derivative of w,:

1
ApA le(v)|?dx < C, Ve >O0.
€ £



From this estimate for e(u:) and Theorem 2, we deduce there exist
3: € R3, B. € R3*3 skew-symmetric, (T:2, - 3) € H*(0,1)?,
C. € HY(0,1), w. € HY(Q.)? such that

dﬁz—:,2 X2 da€,3 X3 ~
~ (x1) - da (x1)— + e 1(x)

R A 1. ~ X: ~
U:(x) = & + Bex + EU€’2(X1) + Czs(xl);3 + We 2(x)
1. ~ X2 ~
*U€,3(X1) - Cz—:(Xl)f + Ws,3(X)
€ €
and
[te2llH2(0,1) + [[Ue 3l H2(0,1) < €

[l 0,1y < €

~ 1 ~ .
[Well (.2 < Ce = N (/ !W5!2dX+/ IDW52dX> <C
5 Q. Q.



