
Controlling Velocities and Domains of
the Incompressible Fluid by Means of a

Degenerate Distributed Forcing

Andrey Sarychev∗

Dip. Matematica e Informatica U.Dini,

University of Florence, Italy

∗in collaboration with A.Agrachev, SISSA, Trieste, ITALY

1



Euler/Navier-Stokes (N-S) equation of �uid motion

∂tu+ (u · ∇)u+∇p = ν∆u+ F (t, x),

∇ · u = 0.

u(t, x) - �eld of velocities, p(t, x) - pressure, F (t, x) - controlling

forcing term

We use low-dimensional or degenerate control - a linear combi-

nation with controlled time-variant coe�cients:

F (t, x) =
∑
k∈K

fk(t)φk(x),

K is a �xed �nite set, φk(x) are �xed functions of space variables.
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The choice of the class of degenerate controls distinguishes the

problem setting from other approaches where a "full-dimensional"

control is applied on the boundary or on a sub-domain (cf. J.-

M. Coron, A. Fursikov - O. Imanuvilov et al, 90's)

Exact controllability by means of degenerate control - is not

possible for any ν ≥ 0.

Adequate controllability setting - approximate controllability, or

controllability in �nite-dimensional projections.

We will seek for controllability criteria with �xed sets K of con-

trolled modes, which are independent of the rate of approxima-

tion and of the dimension of projections.

The dimension of needed control is small (≤ 8) in each of the

following criteria of approximate controllability.

3



• su�cient controllability criteria for �nite-dimensional Galer-

kin approximations of the N-S equation 2D and 3D torus

(A.Agrachev, AS, 2004, M.Romito, 2004)

• su�cient approximate controllability and controllability in �n.-

dim. projections for N-S/Euler equation on:

�at 2D torus, rectangle, sphere, hemisphere,

Riemannian surface with generic metric; (A.Agrachev, AS,

S.Rodrigues, '04-09)

• extension of the methods on 3D torus (A.Shirikyan, H.Nersessian,

'06-'09)
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Open questions remaining:

The obtained approximate controllability criteria, are 'basis-dependent'.

The 'controlled modes' φk(x), which form the controlling forcing

term F (t, x) =
∑
k∈K fk(t)φk(x) are to be chosen in relation to

spectral geometry of the 2D domain (are complex exponentials

in the case of torus, spherical harmonics for a sphere/hemisphere

etc.)

Desirable: approximate controllability criteria which are struc-

turally stable with respect to perturbations of φk(x).

So far controllability of the N-S equation of its (high-dimensional)

Galerkin approximations remains unproved for many 2D domains,

e.g for a disc D2.
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Geometric control for other classes of non linear (semilin-

ear) equations

Results on approximate controllability obtained for

• defocusing cubic Schroedinger equation (AS, 2012);

• Burgers equation (A.Shirikyan, to appear).

There is work in progress on abstract semilinear equation with a

polynomial nonlinearity, driven by a degenerate control.

An interesting problem is an extension of the developed methods

on nonpolynomial nonlinearities.
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Controlling velocity �eld and the 'domains'

Coming back to the Navier-Stokes equation we extend our prob-

lem setting by adding a (Lagrange) equation for the motion of

the domains of �uid by virtue of the velocity �eld.

We consider the �ow on 2D torus T2 with the standard area

form.

We seek for a su�cient criteria that two velocity �elds - the

initial ũ(x) and the target û(x), and two domains - the initial

D̃ ⊂ T2 and the target domain D̂ ⊂ T2 - of equal volumes can

be steered one to another approximately by a degenerate forcing

acting on the time interval [0, T ].
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Representation of the Lagrangian part

The domains D̃, D̂ may have several (equal number of) connected

components of coinciding volumes:

D̃ =
S⋃
s=1

D̃s, D̂ =
S⋃
s=1

D̂s, vol(D̂s) = vol(D̃s), s = 1, . . . , S.

Each domain is represented as a regular Lebesgue set of a smooth

function: Dχ = {x ∈ T2| χ(x) ≥ 0}.

The �ow of a �uid - a family of volume preserving di�eomor-

phisms Pt - on T2 - transforms the domain Dχ into the domains

Dχt, where χt(x) =
(
P̂−1
t χ

)
(x) = χ

(
P−1
t (x)

)
.
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By direct computation

∂tχt = −ut ◦ χt = −∇χt · ut.

We will seek for approximate controllability in the space of func-

tions χ.

We assume each connected component Dj to be di�eomorphic

to a disc and to be a Lebesgue set Lχ≥0 of a smooth function χj,

with the boundary ∂Dj being a (connected component of the)

regular level set χ−1
j (0).

Under these assumptions ∀ε > 0 ∃δ > 0 such that

∀ζ : ‖ζ − χ‖L2(T2) < δ ⇒ meas
(
Lχ≥04L

χ
≥0

)
< ε,

so approximating χ(x) means 'approximation in measure' of its

Lebesgue set.



Problem setting


∂tχt = −ut ◦ χt = −∇χt · ut.
∂tu+ (u · ∇)u+∇p = ν∆u+

∑
k∈K e

ik·xvk(t),
∇ · u = 0, (1)

De�nition 1 (approximate controllability) The system (1) is

time-T approximately controllable, if for any two couples (χ̃, ũ), (χ̂, û)

and for each ε > 0 there exists a control which steers the system

in time T from (χ̃, ũ) to the ε-neighborhood of (χ̂, û) in the norm

of L2(T2)× L2(T2). �

Related to this setting is the work by O.Glass and T.Horsin on

Lagrangian controllability.

9



Main result We formulate a su�cient criterion of approximate

controllability for the system (1).

Theorem. Choosing the 4-element set of controlled modes

K4 = {(±1,0), (±1,±1)} ⊂ Z2 one achieves time-T approxi-

mately controllability of the system (1) for each T > 0.

Remark. There is an ample class of sets K possessing so-called

saturating property on Z2 which su�ce for approximate control-

lability.

Sketch of the proof follows.
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Helmholtz form of the N-S equation

It is natural in 2D case to pass to the vorticites w = ∇⊥ · u.

Represent the divergence-free velocity �eld u with
∫
T2 udx = 0 as

u = ∇⊥∆−1w = ∇⊥ψ, where w is the vorticity and ψ = ∆−1w is

a stream function.

The N-S equation can be given Helmholtz form

∂tw + {∆−1w,w} − ν∆w = v(t, x),

where {·, ·} stays for the Poisson bracket, corresponding to a

standard symplectic form on the �at torus T2.

The Lagrangian part can be rewritten as

∂tχ = {χ,∆−1w}.
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The control is v(t, x) =
∑
k∈K vk(t)eik·x, K ⊂ Z2.

Thus we get a system

∂tχ = {χ,∆−1w},
∂tw + {∆−1w,w} − ν∆w =

∑
k∈K

vk(t)eik·x,

which is a particular kind of control-a�ne in�nite-dimensional

system

ẏ = f0(y) +
∑
k∈K

fkvk(t)

with quadratic polynomial "drift term" f0(y) and constant ((w,χ)-

independent) controlled vector �elds fk.



Outline of the approach from geometric control viewpoint

Our study of controllability of the equation stems from the

method of iterated Lie extensions, available in �nite-dimensional

case.

Lie extension of the control system ẏ = f0(y) +
∑
k∈K f

kvk(t)

is a method of 'enrichment' of the r.-h. side of the control

system by extending controlled vector �elds 'almost maintaining'

controllability properties of the system.

The additional v.f. are expressed via Lie brackets of f j. If after a

series of extensions one arrives to a system, which is controllable,

then controllability of the original system can be concluded.
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Examples of extensions

We are in �nite-dimensional case

Example 1: extension by a convexi�cation or relaxation

Trajectories of the system

ẋ = 1, ẏ = u, u ∈ {−1,1} - a nonconvex set

C0-approximate trajectories of the convexi�ed system

ẋ = 1, ẏ = u, u ∈ [−1,1] - convexi�ed set
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Example 2: Lie bracket extension Consider a control system

on a manifold M

ẋ = X1(x)u1 +X2(x)u2,

where the v.f. X1(x), X2(x) satisfy a bracket generating condi-

tion. Then the system is globally controllable (Rashevsky-Chow

Th.).
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Key Lie extension

The following Lie extension will be key (guiding) tool for estab-

lishing our approximate controllability result.

Lemma 2 (Lie extension lemma) Consider control-a�ne an-

alytic system

ẏ = f0(y) + f1(y)v̂1 + f2(y)v̂2. (2)

Let [f1, f2] = 0, [f1, [f1, f0]] = 0. Then the system

ẏ = f0(x) + f1(y)ṽ1 + f2(y)ṽ2 + [f1, [f2, f0]](y)v12, (3)

is �xed-time Lie extension of (2), meaning that

CLOSURES OF THE TIME-T ATTAINABLE SETS OF (2)

and (3) COINCIDE. �
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Finite-dimensional analogue: controlling angular velocity

and the attitude of a satellite

Controlled attitude motion of a satellite (rigid body) is described

by a couple of equations on SO(3)× so∗(3)

Q̇ = QJ−1M,

Ṁ = M × J−1M − νM + L1v1(t) + L2v2(t),

where Q ∈ SO(s) describes the attitude, while M ∈ so∗(3) � R3 is

an angular momentum of the satellite, J being an inertia tensor,

with distinct eigenvalues (principal inertia momenta).

This is an example of control-a�ne system

ẋ = f0(x) + f1v1(t) + f2v2(t).
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In our example the drift v.f. f0(x) is 2nd degree polynomial and

the controlled v.f. f1 = L1, f
2 = L2 are constant.

The state (Q,M) is 6-dimensional and there are two controls.

We assume L1 to be a principal axis of the body, so that [f1, [f1, f0]]

vanishes.

Involving the Lie extension lemma we get an extending con-

trol v.f. f12 = [f1, [f2, f0]], multiplied by the extending control

v12(t); v.f. f12 has vanishing Q-component and constant M-

component

L12 = L1 × J−1L2 + L2 × J−1L1.



For a generic choice of L1, L2 the triple of vectors(
0
Lk

)
is linearly independent.

Computing the Lie brackets [f0, fk], k ∈ 1,2,12 we get another

triple of v.f.

[f0, fk] =

(
QJ−1Lk
∗

)

with linearly independent Q-components.

Having 6 controls available makes it easy to conclude controlla-

bility (it is small-time and controls are high-gain).



In the PDE case the respective Lie algebraic and di�erential

geometric tools are not available

We will employ fast-oscillating controls, whose use underlies Lie

extensions method in �nite dimension.

Specially designed resonances between such controls result in a

motion which provides (approximates) motion in extending di-

rection of a Lie bracket.
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Structure of the control

The control we are going to construct is a concatenation of two

controls.

First control steers in time T the initial domain D̃ to a neigh-

borhood of the target domain D̂ .

At the same time it keeps the terminal vorticity w(T ) in a bounded

domain.

The second control steers the �eld of velocities to a neighbor-

hood of the target �eld, while "not moving much" the domain.
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Controlling the domain

The construction goes in 3 steps.

1. Moving the domain by ANY hamiltonian dynamics.

2. Moving the domain (approximately) by virtue of N-S equation

with HIGH-DIMENSIONAL forcing.

3. Moving the domain (approximately) by virtue of N-S equation

with LOW-DIMENSIONAL (degenerate) forcing.
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1. Volume-preserving di�eotopy. (Anosov-Katok-)Krygin's

Theorem

Our construction starts with the result on existence of an area

preserving dynamics, which transforms the domain D̃ into D̂ ex-

actly.

Theorem 3 (A-K-K, 1970,1971) For two sets D̃1, . . . , D̃α,

D̂1, . . . , D̂α of disjoint domains di�eomor�c to a closed discs with

Vol(D̃j) = Vol(D̂j), and T > 0, there exists a volume-preserving

di�eotopy Pt, (P0 = Id), such that PT (D̃j) = D̂j.

In 2D case

Corollary 4 The above mentioned volume-preserving di�eotopy

is a �ow generated by a time-variant Hamiltonian vector �eld

(with a continuous in time hamiltonian τ → hτ).
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2. High-dimensional control for the volume element trans-
fer

We start with constructing a control, supported on a small in-
terval [0, N−1], N >> 1

v(t, x) = N∂tV (t, x),

where V (t, x) =
∑
` v`(t)e

i`·x is a (high-order) trigonometric poly-
nomial. The control is high-gain.

Substituting it into the r.-h. side of our system we get

∂tχ = {χ,∆−1w},
∂tw + {∆−1w,w} − ν∆w = N∂tV (t, x),

and proceed with the time-variant substitution

w(t) = w∗(t) +NV (t, x), ∗

∗We impose the condition V |t=0 = V |t=T = 0 to preserve boundary data.
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Rescaling the time to Nt = τ ∈ [0,1] one arrives to the equations

∂τχ = {χ,∆−1V (τ)}+N−1{φ,∆−1w∗},
∂τw

∗ = N{∆−1V (τ), V (τ)}+

+{N−1∆−1w∗ + ∆−1V (τ), w∗}+ {∆−1w∗, V (τ)} − ν∆(N−1w∗+ V (τ))

We wish to:

steer the χ-component to a neighborhood of the target χ̂

AND

maintain the terminal value w(1) of the w-component in a bounded

domain.

SEEMINGLY we get a contradiction
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Fast-oscillating control and relaxation metric

The construction involves fast-oscillating functions∗.

For �nite-dimensional time-variant ODE ∂τy = Yτ(y) it is known
(since the work of L.C.Young on 'generalized curves') that the

trajectories depend continuously on the Ck-norms of the primi-

tives
∫ τ
0 Yθdθ of the r.-h. side.

This continuity underlies in particular 'theory of relaxed controls;

therefore we describe the convergence of the primitives via re-

laxation seminorms ‖
∫ ·
0 Yθdθ‖Ck.

If Yτ is fast-oscillating in time τ , e.g. Yτ = Ỹ (y) sinNτ, N >> 1,
then the evolution of y(t) in time 1 will be O(N−1).
∗we mean fast-oscillating functions with zero average
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Fast-oscillating controls and continuity results for (pertur-

bative) N-S equation

There is no general theory of relaxed controls available for gen-

eral non-linear PDE ∗

Continuity results for the 'perturbative N-S equation' (the 2nd

equation) have been proved recently (A.Agrachev, AS, S.Rodrigues

for di�erent 2D domains and boundary conditions; A.Shirikyan

for T3)

∗Several results for di�erential inclusions in in�nite-dimensional spaces and

for semilinear evolution PDE's
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Going back to our system

∂τχ = {χ,∆−1V (τ)}+O(N−1),

∂τw
∗ = N{∆−1V (τ), V (τ)}+O(1),

we search for V (τ) with fast-oscillating and non oscillating parts,

so that

{∆−1V (τ), V (τ)} is fast oscillating with the relaxation seminorms

O(N−1).

∆−1V (τ) approximates the Hamiltonian vector �eld ~hτ , coming

from Krygin's theorem the relaxation seminorms.
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From low- to high-dimensional control by Lie extension.

Passage from high-dimensional to low-dimensional control in Eu-

ler equation goes by (inverse) induction with an induction step

being a Lie extension which is a key tool for establishing con-

trollability.

Lemma 5 (Lie extension lemma) Consider control-a�ne an-

alytic system

ẏ = f0(y) + f1(y)v̂1 + f2(y)v̂2. (2)

Let [f1, f2] = 0, [f1, [f1, f0]] = 0. Then the system

ẏ = f0(x) + f1(y)ṽ1 + f2(y)ṽ2 + [f1, [f2, f0]](y)v12, (3)

is �xed-time Lie extension of (2), meaning that

26



CLOSURES OF THE TIME-T ATTAINABLE SETS OF (2)

and (3) COINCIDE. �



In our case the drift f0(w) = −{∆−1w,w} + ν∆w, while the

controlled vector �elds fk = eik·x, f ` = ei`·x are constant (w.r.t.

w).

The Lie bracket [f1, [f1, f0]] = β{∆−1eik·x, eik·x} vanishes, while

the Lie bracket [f1, [f2, f0]] = γei(k+`)·x, with γ non-vanishing,

whenever k ∧ ` 6= 0, |k| 6= |`|.
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Extension for the controlled N-S equation via resonances

Lie brackets are unavailable for the nonlinear PDE setting BUT...

we use the proof of Lie Extension Lemma, based on 'design of

resonances' of fast oscillations.

In (VERY) short, the end-points w(1) of the trajectories of the

N-S equation guided by the control

V e(t, x) = ṽk(t)eik·x + ṽ`(t)e
i`·x + ṽk+`(t)e

i(k+`)·x,

can be approximated by the end-points wr(1) of the trajectories

of the same equation guided by the 'reduced' control

V (t, x) = v̂k(t)eik·x + v̂`(t)e
i`·x.
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Saturation of the set of controlled modes

This result allows us to add to the set K of original controlled

modes the extended controlled modes k + `, where ,�` ∈ K, |k| 6=
|`|, k ∧ ` 6= 0.

A simple linear algebra on Z2 shows that iterated application

of the extension {k, `} → {k, `, k + `} to the 4-element set K =

{(±1,0), (±1,±1)} spans the whole Z2 wherefrom we can con-

clude approximate controllability by means of controls applied to

the modes from K.
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THANK YOU!
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