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Insensitizing controls

J. -L. Lions has introduced the notion of insensitizing control for heat
type equations in 1989. Several results for parabolic type equations:
heat (Bodart et al. 1995, de Teresa 2000, Bodart et al. 2004, de
Teresa and Zuazua 2009, Kavian and de Teresa 2010, ...), Stokes:
Guerrero 2007, Gueye 2012, Navier-Stokes Gueye 2013...
Wave equation: Dáger 2006, Tebou 2008, Tebou 2011.

The aim is to build controls that satisfy two requirements:
to drive the initial state to a desired final state at time T
and to be robust to small unknown perturbations of the initial
data with respect to a given measurement of the solutions.

Let us describe formally this notion for the scalar wave equation in a
bounded open set Ω ⊂ Rn with a smooth boundary Γ

ytt −∆y = bv in (0,T )× Ω ,

y = 0 in (0,T )× Γ ,

(y , yt )(0, .) = (y0 + τ0z0, y1 + τ1z1) in Ω ,
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Here

(y0, y1) are given known initial data
(z0, z1) are unknown perturbations of the initial data and of norm
1 in appropriate functional spaces
τ0 and τ1 are real (small) numbers measuring the amplitude of
the perturbations (z0, z1)

v is the control
b is the control coefficient, which may vanish in some region of Ω.

We associate to the solution y the following measurement

φ(y ; τ0, τ1) =
1
2

∫ T

0

∫
Ω

c(x)y2 dx dt ,

where c is the observation coefficient, which may also vanish in some
regions of Ω and may have a disjoint support from that of the control
coefficient b.
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One says that the control v insensitizes φ if the following property
holds

∂φ

∂τ0
(y ; 0,0) =

∂φ

∂τ1
(y ; 0,0) = 0 ,

for all (z0, z1) of norm 1 in the appropriate spaces. We have formally

∂φ

∂τ0
(y ; 0,0) =

∫ T

0

∫
Ω

c(x)y2w dx dt ,

∂φ

∂τ1
(y ; 0,0) =

∫ T

0

∫
Ω

c(x)y2z dx dt ,

where y2, w and z respectively solve
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y2,tt −∆y2 = bv in (0,T )× Ω ,

y2 = 0 in (0,T )× Γ ,

(y2, y2,t )(0, .) = (y0, y1) in Ω ,


wtt −∆w = 0 in (0,T )× Ω ,

w = 0 in (0,T )× Γ ,

(w ,wt )(0, .) = (z0,0) in Ω ,
ztt −∆z = 0 in (0,T )× Ω ,

z = 0 in (0,T )× Γ ,

(z, zt )(0, .) = (0, z1) in Ω .

Introducing the auxiliary equation
y1,tt −∆y1 + c(x)y2 = 0 in (0,T )× Ω ,

y1 = 0 in (0,T )× Γ ,

(y1, y1,t )(0, .) = (y0
1 , y

1
1 ) in Ω .
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Then, multiplying the above equation by w , integrating over (0,T )×Ω
and using the equation in w , we have formally

∂φ

∂τ0
(y ; 0,0) =

∫ T

0

∫
Ω

c(x)y2w dx dt = −
∫ T

0

∫
Ω

(y1,tt −∆y1)w =

−
[ ∫

Ω

y1,tw − y1wt

]T

0
.

In a similar way, we have

∂φ

∂τ1
(y ; 0,0) =

∫ T

0

∫
Ω

c(x)y2z dx dt = −
∫ T

0

∫
Ω

(y1,tt −∆y1)z =

−
[ ∫

Ω

y1,tz − y1zt

]T

0
.
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Hence, the insensitizing property will hold as soon as: for any (y0, y1)
and any final state (yT , y2,T ), given in appropriate energy space, there
exists a control v (in a suitable space), such that the solution of the
controlled 2 order cascade system

y1,tt −∆y1 + c(x)y2 = 0 in (0,T )× Ω ,

y2,tt −∆y2 = bv in (0,T )× Ω ,

y1 = y2 = 0 in (0,T )× Γ ,

(y1, y1,t )(0, .) = (y0
1 , y

1
1 ) in Ω ,

(y2, y2,t )(0, .) = (y0, y1) in Ω ,

(1)

satisfies the following property:

(y1, y1,t )(0, .) = (y1, y1,t )(T , .) = 0 , (y2, y2,t )(T , .) = (yT , y2,T ) in Ω .

Important: normally, one equation is forward in time, the other is
backward in time. Here due to the reversibility property for the
wave equation, it is not a problem.
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A similar formal analysis can be performed for the building of
insensitizing controls on a subset Γ1 of the boundary Γ.

Hence the existence of insensitizing controls for the scalar wave
equation is directly linked to an exact controllability result for a
coupled system of two equations in cascade with a single control.

This problem can be reformulated as

Y ′′ +M2Y = B2v , (Y ,Y ′)(0) = (y0
1 , y

0, y1
1 , y

1) ,

where Y = (y1, y2)t , B2v = (0,bv)t and where the involved matrix
operatorM2 has the following upper triangular form

M2 =

(
A cI
0 A

)
where I stands for the identity operator in L2(Ω) and A = −∆ stands
for the homogeneous Dirichlet Laplacian.
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• Dáger 2006 proves the insensitizing boundary controllability, and
the ε-insensitizing locally distributed controllability for the
one-dimensional wave equation.
In both situations, the control regions need not to meet the coupling
region. More precisely, ω and O can be any arbitrary non-empty
subsets of Ω.

• Tebou 2008 considers the same questions in the multi-dimensional
framework for locally distributed control. He considers only situations
for which the control region ω and coupling region O meet.

More precisely, he proves the ε-insensitizing locally distributed
controllability for arbitrary open subsets ω and O such that ω ∩O 6= ∅.

He also proves the insensitizing locally distributed controllability
under a strong geometric assumption, namely that both the control
and coupling regions contain the same neighbourhood of a part Γ1 of
the boundary, that satisfies the usual multiplier condition.
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The results are based in both cases on a controllability result for a
coupled system in cascade.

The difficulty is to compensate the lack of control on the component
y1. By duality, the difficulty is to recover the energy of the initial data
of the first component in the dual cascade system.

We shall give in the sequel, a general result for the existence of
insensitizing controls in the multi-dimensional case for both locally
distributed and boundary controls, and in situations for which one can
have ω ∩O = ∅.

Several results are available for the insensitizing control of heat or
parabolic systems: Bodart and Fabre 1995, Bodart and
González-Burgos and Pérez-García 2004,... de Teresa 2000,
Guerrero (Stokes 2007), de Teresa and Zuazua 2009, de Teresa and
Kavian 2010, Gueye (Stokes 2012), Gueye (Navier-Stokes 2013)...



beamer-tu-logo

beamer-ur-logo

Simultaneous control of systems of equations coupled in parallel

Sommaire

1 Insensitizing control for scalar wave equations

2 Simultaneous control of systems of equations coupled in parallel

3 Controllability of 2-coupled wave cascade systems by a single control

4 Abstract dual cascade systems: a NS condition for observability

5 Application to the insensitizing control of the scalar wave equation

6 Dual bi-diagonal cascade systems of n equations

7 Applications to heat or Schrödinger coupled systems in cascade

8 Further extensions and concluding remarks



beamer-tu-logo

beamer-ur-logo

Simultaneous control of systems of equations coupled in parallel

Another motivation is the simultaneous control of systems coupled in
parallel. Let us give an example.
Denote by −L a uniformly elliptic operator on Ω ⊂ Rn with smooth
coefficients, subjected to homogeneous Dirichlet boundary
conditions.

Set p = (p1,p2,p3)t , and use the notation ptt = (p1,tt , . . . ,p3,tt )
t ,

Lp = (Lp1, . . . ,Lp3)t .

Let α and β be given functions on the set Ω. We consider the
following controlled problem

p1,tt − Lp1 − (3α + β)p1 + (α + β)p2 + (2α + β)p3 = v1 ,

p2,tt − Lp2 − (3α− β)p1 + (−α + β)p2 + (−2α + β)p3 = v2 ,

p3,tt − Lp3 − 6αp1 + 2αp2 + 4αp3 = v3 ,

where the initial conditions for p are known and where
v1, v2, v3 ∈ L2((0,T )× Ω) are the controls. Given any initial data, we
want to find controls which drive back the solution to equilibrium at
time T .
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We want to control simultaneously these equations coupled in
parallel.

This means that we look for controls which depend only on a scalar
control.

More precisely we look for controls (v1, v2, v3) such that

(v1, v2, v3) = (η1h, η2h,h) ,

where h is a scalar control in L2((0,T )× Ω), and where η1, η2 are
fixed real coefficients.

Hence, for each given initial data we look for a scalar control h which
could simultaneously drive back to equilibrium at time T > 0 each
component of the system, i.e. which is such that pi (T ) = pi,t (T ) = 0,
i = 1,2,3 for a sufficiently large time T .
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Making an appropriate change of unknowns, we can transform this
simultaneous control problem into a control problem for a bi-diagonal
cascade problem by a single control. More precisely, set
η1 = 2 , η2 = 4 and

y1 =
1
4

(−p1 + p2 − 2p3),

y2 =
1
4

(3p1 − p2 − 2p3),

y3 = (−p1 + p2 + p3),

Then y = (y1, y2, y3)t is the solution of the following bi-diagonal
3-cascade system

y1,tt − Ly1 + 6α(x)y2 = 0 , t ∈ (0,T ) , x ∈ Ω ,

y2,tt − Ly2 + β(x)
2 y3 = 0 , t ∈ (0,T ) , x ∈ Ω ,

y3,tt − Ly3 = 3h , t ∈ (0,T ) , x ∈ Ω .
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This problem can be reformulated as

Y ′′ +M3Y = B3h ,

where Y = (y1, y2, y3)t , B3v = (0,0,3h)t and

B3v = (0,0,3h)t , M3 =

−L 6αI 0
0 −L β

2 I
0 0 −L


where I stands for the identity operator in L2(Ω).

Here again, only the last equation is directly controlled and the goal is
to determine whether if it is possible to drive any initial state to
equilibrium by acting only on the last equation.
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We can consider more generally bi-diagonal n-coupled controlled
cascade system:

Y ′′ +MnY = Bnv ,

with Y = (y1, y2, . . . yn)t , Bnv = (0, . . . ,Bnv)t , and

Mn =


A c21I 0 . . .
0 A c32I 0 . . .
...
0 0 . . . A cnn−1I
0 0 . . . 0 A

 ,

Here once again, only the last equation is controlled, and the purpose
is to control the full system.
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Of course, there exist other forms of systems, such as for instance
symmetric systems for which the matrix operator is symmetric and
also more general systems with "less structure".

We see through the above examples that cascade systems arise
naturally for several applications in control theory.

If we deal a single scalar controlled equation, then a wide literature
has been developed with different methods to handle the
controllability issues:

Multipliers method, micro-analysis approach, Carleman estimates,
Fourier decomposition and Ingham types inequalities... by several
authors: Russell, Fattorini, Lions, Ho, Zuazua, Komornik, Lasiecka,
Triggiani, Bardos, Lebeau, Rauch, Burq, Gérard . . .
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Multipliers method, micro-analysis approach, Carleman estimates,
Fourier decomposition and Ingham types inequalities... by several
authors: Russell, Fattorini, Lions, Ho, Zuazua, Komornik, Lasiecka,
Triggiani, Bardos, Lebeau, Rauch, Burq, Gérard . . .
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Questions:

Here the main difficulty is due to the requirement to control a system
of two (or more) coupled equations, by a single (or a reduced number
of) control(s).

If the coupling vanishes then it is not possible to drive back to
equilibrium the first uncontrolled equation, since it is then decoupled
from the second one.

Hence if it is possible to control the coupled system, the coupling
effects have to be active in some way.

This coupling should compensate the lack of controls in several
equations: through which properties? And in particular, it is important
to determine sufficient sharp geometric conditions on ω (resp. Γ1) the
active control region and O the active coupling region.

Is it possible to get necessary and sufficient (NS) conditions for such
controllability properties to hold?
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We recall that by the Hilbert Uniqueness Method (HUM, Lions 1988),
the exact controllability of the scalar wave equation is equivalent to an
observability property for the homogeneous wave equation (dual
problem). On the other hand, this observability property holds as
soon as the Geometric Control Condition (GCC) of Bardos Lebeau
Rauch (1992) is satisfied (it is a sufficient and almost necessary
condition). We recall that (GCC) reads as follows

In the case of locally distributed observation: an open subset
ω of Ω satisfies (GCC) if there exists a time T > 0 such that
every generalized bicharacteristic traveling at speed 1 in Ω meets
ω at a time t < T .
Boundary observation: a subset Γ1 of the boundary Γ satisfies
(GCC) if there exists a time T > 0 such that every generalized
bicharacteristic traveling at speed 1 in Ω meets Γ1 at a time t < T
in a non-diffractive point.
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The above geometric conditions

as well as the fact that T has to be sufficiently large

are due to the finite speed of propagation for the wave equation.

Note that such conditions do not occur for the corresponding heat
equation.

Other geometric conditions based on the multiplier method have also
been derived, they hold for instance for star-shaped domains . . .

Once the observabilty inequalities are proved, the control v is build
thanks to the HUM method.

Hence the exact controllability of the wave equation is well-known.
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Cascade systems of two equations:

We first consider the following model example, namely the controlled
cascade wave system in the case of a locally distributed control


y1,tt −∆y1 + cy2 = 0 in (0,T )× Ω ,

y2,tt −∆y2 = bv in (0,T )× Ω

yi = 0 in (0,T )× Γ for i = 1, . . . ,2 ,
(yi , yi,t )(0) = (y0

i , y
1
i ) for i = 1, . . . ,2 .

We set H = L2(Ω), A = −∆ with domain D(A) = H2(Ω) ∩ H1
0 (Ω) and

the fractional powers of A as usual with the convention that
D(A0) = H. We recall in particular that D(A1/2) = H1

0 (Ω).

We also set Y0 = (y0
1 , y

0
2 , y

1
1 , y

1
2 ). Then we have the following exact

controllability result.
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Theorem (A.-B. CRAS 2012, MCSS 2013)

We assume that :

the coefficient b satisfies{
b ∈ C(Ω) ,b ≥ 0 on Ω ,

{b > 0} ⊃ ω for some open subset ω ⊂ Ω ,

where ω satisfies (GCC), the Geometric Control Condition
(Bardos Lebeau and Rauch 1992)
the coefficient c satisfies

c ∈W 1,∞(Ω)

c ≥ 0 on Ω ,

{c > 0} ⊃ O for some open subsets O ⊂ Ω .

where O ⊂ Ω satisfies (GCC)
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Theorem (continued)

Then there exists T ∗ > 0 such that

• for all T > T ∗,

• and for all Y0 ∈ D(A)× D(A1/2)× D(A1/2)× H,

there exists a control function v ∈ L2((0,T ); L2(Ω)),

such that the solution Y = (y1, y2, y ′1, y
′
2) of the controlled cascade

system with initial data Y0 satisfies

Y (T ) = 0 .
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We consider the following controlled cascade wave system in the
case of a boundary control


y1,tt −∆y1 + cy2 = 0 in (0,T )× Ω ,

y2,tt −∆y2 = 0 in (0,T )× Ω

y1 = 0 in (0,T )× Γ , y2 = bv in (0,T )× Γ ,

(yi , yi,t )(0) = (y0
i , y

1
i ) for i = 1, . . . ,2 .

We denote by D(A−1/2) the dual space of D(A1/2) with respect to the
pivot space H. Here D(A−1/2) = H−1(Ω).
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Theorem (A.-B. CRAS 2012, MCSS 2013)

Assume that :

the coefficient b satisfies{
b ∈ C(Γ) ,b ≥ 0 on Γ ,

{b > 0} ⊃ Γ1 for some subset Γ1 ⊂ Γ ,

where Γ1 satisfies (GCC)

the coefficient c satisfies (A2) where O ⊂ Ω satisfies (GCC)

Then there exists T ∗ > 0 such that

• for all T > T ∗,

• and for all Y0 ∈ D(A1/2)× H × H × D(A−1/2),

there exists a control function v ∈ L2((0,T ); L2(Ω))such that

Y (T ) = 0 .
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We can make several remarks:

One has to define rigorously the notion of transposition solutions
for boundary controlled cascade systems. This relies on the dual
homogeneous system which is no longer conservative as for the
scalar case. However, one can naturally extend this notion.

One important point in the above results is that, the geometric
conditions on the supports of the control and of the coupling
coefficient allow disjoint intersections between the two supports,
since the condition is that they both satisfy (GCC).

The proof is constructive so that the time T ? can be
characterized, but is not optimal.

We prove the above results for general self-adjoint coercive
operators A and general bounded coupling operators.

The control v can be chosen in weaker or stronger spaces.
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The proof of the above theorems relies on appropriate observability
estimates for the dual homogeneous system:



u1,tt −∆u1 = 0 in (0,T )× Ω ,

u2,tt −∆u2 + c(x)u1 = 0 in (0,T )× Ω ,

ui = 0 for i = 1, . . .2 in (0,T )× ∂Ω ,

(ui ,ui,t )(0) = (u0
i ,u

1
i ) for i = 1, . . .2 in Ω ,

Here the coupling operator is the multiplication operator by the
coefficient c. Moreover, in view of applications to insensitzing
controls, one can note that c ≥ 0 in Ω, but may vanish over some
parts of the domain.
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Theorem (A.-B. 2012)

We assume that c satisfies the above smoothness property and
{c > 0} ⊃ O where O ⊂ Ω satisfies (GCC). Then we have the
following result in the case of boundary observation.
Let b be a given function defined on Γ such that {b ∈ Γ,b > 0} ⊃ Γ1
holds where Γ1 satisfies (GCC). Then there exists T ∗ > 0 such that
for all T > T ∗, there exist constants ci,2(T ) > 0, i = 1,2 such that for
all U0 ∈ L2(Ω)× H1

0 (Ω)× H−1(Ω)× L2(Ω) the following observability
inequalities hold

c1,2(T )||(u0
1 ,u

1
1)||2L2(Ω)×H−1(Ω)) ≤

∫ T

0

∫
Γ

b
∣∣∣∂u2

∂ν

∣∣∣2 dσ dt ,

c2,2(T )||(u0
2 ,u

1
2)||2H1

0 (Ω)×L2(Ω) ≤
∫ T

0

∫
Γ

b
∣∣∣∂u2

∂ν

∣∣∣2 dσ dt ,

Assume that ∂Ω has no contact of infinite order with its tangent. Then
the above condition on O and ω (resp. on O and Γ1) for the case of
locally (resp. boundary) distributed control are necessary.
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The above results can be proved in a more general context, that is for
abstract controlled cascade systems, for which A is a uniformly elliptic
operator (for instance with variable coefficients).

It can also be associated to different types of boundary conditions.

Hence these results apply to much more general PDE’s than the
wave equation: elasticity, plates, beams . . .

The controllability results are deduced from observability results for
the corresponding dual homogeneous abstract cascade systems via
duality methods (here HUM).
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We consider the abstract dual cascade system
u′′1 + Au1 = 0 ,
u′′2 + Au2 + C21u1 = 0 ,
(ui ,u′i )(0) = (u0

i ,u
1
i ) for i = 1,2 ,

where

H is an Hilbert space with norm | · | and scalar product 〈 , 〉
C21 is a bounded operator in H
A satisfies:


A : D(A) ⊂ H 7→ H ,A∗ = A ,
∃ ω > 0 , |Au| ≥ ω|u| ∀ u ∈ D(A) ,

A has a compact resolvent .
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We want to study the observability properties for this cascade
systems by a single observation on the second component in suitable
functional spaces.

For this we need some notation:

We set Hk = D(Ak/2) for k ∈ N and by convention H0 = H
equipped with the corresponding norm and scalar product.

H−k denotes the dual space of Hk with the pivot space H

For V = (v1, v2) ∈ Hk ×Hk−1, we define the energies of level k as

ek (V )(t) =
1
2

(
|Ak/2v1|2 + |A(k−1)/2v2|2

)
, k ∈ Z , i = 1,2 .

H = H2
1 × H2 .
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Let G be a given Hilbert space, identified with its dual and let
B∗ ∈ L(H2 × H; G) be a given operator. It is the observation operator.
We assume that this operator is admissible. This means that the
solution of the free wave equation over any given time interval (0,T ):

w ′′ + Aw = 0 , (w ,w ′)(0) = (w0,w1) ∈ H1 × H ,

satisfies the so-called "direct inequality"∫ T

0
‖B∗(w ,w ′)‖2

Gdt ≤ Ce1(W )(0)

where W = (w ,w ′) and where C = C(T ) does not depend on the
initial data for W . As a consequence, it allows to define rigorously the
observation for solutions of finite energy (in the case of boundary
control).
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In view of systems, we shall need a refined admissibility property, for
solutions of the "forced" wave equation

w ′′ + Aw = f , (w ,w ′)(0) = (w0,w1) ∈ H1 × H ,

where f ∈ L2((0,T ); H) with the suitable changes (the energy e1(W )
of the solution is no longer conserved through time). This will be
precised later on.

We recall that the operator B∗ is said to satisfy an observability
inequality for T > T0 > 0 if

∀ T > T0 ,∃ C1(T ) > 0 such that
∀ (w0,w1) ∈ H1 × H , the solution w of
w ′′ + Aw = 0 , (w ,w ′)(0) = (w0,w1) satisfies∫ T

0 ‖B
∗(w ,w ′)‖2

Gdt ≥ C1(T )e1(W )(0) .
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Let us go back to the dual cascade system
u′′1 + Au1 = 0 ,
u′′2 + Au2 + C21u1 = 0 ,
(ui ,u′i )(0) = (u0

i ,u
1
i ) for i = 1,2 ,

We want to give necessary and sufficient conditions on the coupling
operator C21 and on the operator B∗ for the following observability
property

∫ T

0
||B∗U2||2G ≥ C(T )

(
e0(U1)(0) + e1(U2)(0)

)
,

to hold.
Note that the above inequality involves two different levels of
energies: the natural energy for the directly observed component U2
and a weakened energy for the unobserved component U1.
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For this, we shall assume the following hypotheses (A2)− (A5).

We assume that the coupling operator C21 satisfies

(A2)

{
C∗21 ∈ L(Hk ) for k ∈ {0,1} ,
||C21|| = β , |C21w |2 ≤ β〈C21w ,w〉 ∀ w ∈ H ,

(A3)


∃ T0 > 0,∀ T > T0 ,∃ C2(T ) > 0 such that
∀ (w0,w1) ∈ H1 × H the solution w of
w ′′ + Aw = 0 , (w ,w ′)(0) = (w0,w1) satisfies∫ T

0 |C21w ′|2dt ≥ C2(T )e1(W )(0) ,

where W = (w ,w ′). We denote by G a given Hilbert space with norm
|| ||G and scalar product 〈 , 〉G. The space G will be identified to its dual
space in all the sequel. We make the following assumptions on the
observability operator B∗ (the dual operator of the control operator B).
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We assume that B∗ is an admissible observation operator for one
equation, that is

(A4)



B∗ ∈ L(H2 × H; G) ,∀ T > 0 ∃ C > 0,
such that for all (w0,w1) ∈ H1 × H , and f ∈ L2([0,T ]; H) ,

the solution w of w ′′ + Aw = f , (w ,w ′)(0) = (w0,w1) satisfies∫ T
0 ‖B

∗(w ,w ′)‖2
Gdt ≤ C(e1(W )(0) + e1(W )(T )+∫ T

0 e1(W )(t)dt +
∫ T

0 |f |
2dt) ,

where W = (w ,w ′).
We assume the following observability inequality for a single equation

(A5)


∃ T0 > 0,∀ T > T0 ,∃ C1(T ) > 0 such that
∀ (w0,w1) ∈ H1 × H , the solution w of
w ′′ + Aw = 0 , (w ,w ′)(0) = (w0,w1) satisfies∫ T

0 ‖B
∗(w ,w ′)‖2

Gdt ≥ C1(T )e1(W )(0) .
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Remark

The minimal times for which the two observability inequalities hold in
(A3) and (A5) are not necessarily the same for the two observability
operators.

Lemma (A.-B. MCSS 2013)

(Admissibility property) Assume (A1), (A4) and that C21 ∈ L(H), then
for all T > 0, there exists a constant C = C(T ) > 0 such that for all
initial data U0 ∈ H, the solution of the homogeneous dual cascade
system satisfies the following direct inequality∫ T

0
||B∗U2||2G dt ≤ C

(
e0(U1)(0) + e1(U2)(0)

)
.

Remark

This Lemma establishes a hidden regularity property of the solutions:
for all U0 ∈ H, B∗U2 ∈ L2([0,T ]; G).
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Theorem (Sufficient conditions, A.-B. MCSS 2013)

Assume the hypotheses (A1)− (A5). Then there exists T∗ > 0 such
that for all T > T∗, and all initial data U0 ∈ H, the solution of the dual
homogeneous cascade system satisfies the observability estimates{

d1(T )
∫ T

0 ||B
∗U2||2G ≥ e0(U1)(0) ,

d2(T )
∫ T

0 ||B
∗U2||2G ≥ e1(U2)(0) ,

where the constants di (T ) > 0 depend on T and satisfy for T
sufficiently large, suitable asymptotic properties with respect to T .

Note that the above observability inequality is in a decoupled form,
that is it does not involve the sum of the initial energies of the two
components, but each of them separately.

We also prove that the above conditions are optimal in the following
theorem.
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Theorem (Necessary conditions, A.-B. MCSS 2013)

Assume the hypotheses (A1) and (A2). Assume that C21 does not
satisfy the observability property given in (A3) or that B does not
satisfy (A5). Then there does not exist T∗ > 0 such that for all
T > T∗, the following property holds

(OBS)

{
∃ C > 0 such that ∀ U0 ∈ H the solution satisfies
C(e0(U1)(0) + e1(U2)(0)) ≤ C

∫ T
0 ||B

∗U2||2G dt .

Corollary (A.-B. MCSS 2013)

Assume (A1) and (A2). Then (OBS) holds if and only if (A3) and
(A5) hold.
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Here we assumed that provided that the coupling operator C21
satisfies the partial coercivity property given in (A2).

Then to summarize, we prove

Theorem (A.-B. MCSS 2013)

Assume that B∗ is admissible ("forced" wave equation) and that C21
satisfies the partial coercivity property and regularity properties given
in (A2). Then there exists T∗ > 0 such that for all T > T∗, and all
initial data U0 = (u0

1 ,u
0
2 ,u

1
1 ,u

1
2) ∈ H × H1 × H−1 × H the solution of

the dual cascade system satisfies the observability estimate∫ T

0
||B∗U2||2G ≥ C1(T )

(
e0(U1)(0) + e1(U2)(0)

)
,

if and only if
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Theorem (continued)

The operator B∗ satisfies an observability inequality for all T ≥ T0 for
a single scalar abstract equation (property (A5))

and C21 satisfies the observability inequality (A3).

The proof is based on

the two-level energy method (A.-B. 2001, 2003) introduced for
systems coupled symmetrically and coercive couplings

its extension to handle partially coercive couplings (A.-B. and
Léautaud 2011, 2012) for symmetrically coupled systems



beamer-tu-logo

beamer-ur-logo

Abstract dual cascade systems: a NS condition for observability

The spirit of the proof is to:

compensate the lack of observation of the second component by a
balance effect between the natural energy of the observed
component and the weakened energy of the unobserved one.

This means that we have to work with the H1 × H norm of the
observed component, whereas we have to consider the H−1 × H
norm of the unobserved component. This is a key point.

Note that if C21 vanishes then one cannot get any information on
the initial data for u1. Hence the result cannot hold true without
some assumptions on C21.

One needs first to prove an admissibility result for the coupled
system. This is also used to define rigorously the solutions by
transposition of the abstract controlled problem in Y .
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The ingredients for the two-level energy method are:

a key estimate due to the coercivity properties of the coupling.

observability assumption for a forcing source term, uniform with
respect to sufficiently large times T . This is a key property
introduced already in A.-B. 2003 but proved in applications to
PDE’s by multipliers methods, and generalized later on by A.-B.
and Léautaud in JMPA 2012 for the abstract forced wave
equation (in a form invariant by time-translation).

energy type estimates (several ones are required).

conservation of the total natural and weakened energies and
suitable balance of energies in the case of symmetrically coupled
systems.

this property is lost for cascade systems, however we proved that
the two-level energy method can be extended to handle this
case.
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Positive results on cascade or symmetric systems have also
been obtained by:

• A.-B. SICON 2003 for symmetric coupled systems of two abstract
wave equations in case of coercive coupling operators, with different
diffusion operators

• Rosier and de Teresa 2011 for a one dimensional system of two
wave equations coupled in cascade and for Schrödinger cascade
system in a n−dimensional torus.

• A.-B. and Léautaud JMPA 2012 for symmetrically coupled systems
of two abstract wave equations in case of partially coercive couplings
and the same diffusion operators

• Dehman Le Rousseau and Léautaud (2012) for the case of
2-coupled cascade systems in a C∞ compact connected riemannian
manifold without boundary with an implicit characterization of the
minimal control time via micro-local analysis. They prove a "coupled"
observability inequality.
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Indeed we can observe that

Remark

Symmetric systems are "more coupled" than cascade systems:

Indeed when the initial data for U1 is vanishing in the dual
cascade system, then U1 ≡ 0 for all times so that the system
reduces to a scalar wave equation. This property does not hold
true for symmetric systems. This also tells than the study of
cascade systems is somehow easier than the study of symmetric
(or even more general coupled systems).

Decoupled versus Coupled observability estimates:

It also explains why we can obtain decoupled observability
inequalities for the dual cascade system, and respectively a
coupled observability inequality for the dual symmetric system.
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Concerning methods:

One can note that the methods based on micro-local analysis or
Carleman estimates, neglect in general lower order terms, since they
are absorbed by dominant terms (high frequencies or large values of
parameters).

Here the positive controllability/observability results are based on the
zero order terms due to the coupling and their coercivity properties.
This is a main point in the two-level energy method.

The way to "measure" this positive effect is to work in a bigger space
H × H−1 for the unobserved component. That is why it is important to
work with two different levels of energies.

The two-level energy method is constructive so that it allows us to
obtain quantitative results.
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We consider the scalar wave equation with a locally distributed
control v (the location of the control depending on the the support of
the coefficient function b):

ytt −∆y = ξ + bv in (0,T )× Ω ,

y = 0 in (0,T )× Γ ,

y(0, .) = y0 + τ0z0 in Ω , yt (0, .) = y1 + τ1z1 in Ω ,

(2)

and the scalar wave equation with a boundary control v (the location
of the control depending on the the support of the coefficient function
b in Γ): 

ytt −∆y = ξ in (0,T )× Ω ,

y = bv in (0,T )× Γ ,

y(0, .) = y0 + τ0z0 in Ω , yt (0, .) = y1 + τ1z1 in Ω ,

(3)

where for both cases, the source term ξ ∈ L2((0,T )× Ω), the initial
data (y0, y1) are given known functions in H1

0 (Ω)× L2(Ω) or in
L2(Ω)× H−1(Ω).
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Theorem (A.-B. MCSS 2013)

Assume that c ≥ 0 satisfies c > 0 on O where O satisfies (GCC). Let
b ≥ 0 be given such that b > 0 on ω where ω satisfies (GCC). Then
for any given ξ ∈ L2((0,T ); L2(Ω)) and (y0, y1) ∈ H1

0 (Ω)× L2(Ω),
there exists an exact control v ∈ L2((0,T ); L2(Ω)) that drives back the
solution of the scalar wave equation

y2,tt −∆y2 = ξ + bv in (0,T )× Ω ,

y2 = 0 in (0,T )× Γ ,

(y2, y2,t )|t=0 = (y0, y1) in Ω ,

to equilibrium, i.e. y2(T ) = y2,t (T ) = 0 and insensitizes Φ along the
solutions.
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Theorem (A.-B. MCSS 2013)

Assume that c satisfies the above hypothesis. Let b ≥ 0 be given on
Γ such that b > 0 on Γ1 where Γ1 satisfies (GCC). Then for any given
ξ ∈ L2((0,T ); L2(Ω)) and (y0, y1) ∈ L2(Ω)× H−1(Ω), there exists an
exact control control v ∈ L2((0,T ); L2(Γ)) that drives back the solution
of the scalar wave equation

y2,tt −∆y2 = ξ in (0,T )× Ω ,

y2 = bv in (0,T )× Γ ,

(y2, y2,t )|t=0 = (y0, y1) in Ω ,

to equilibrium, i.e. y2(T ) = y2,t (T ) = 0 and insensitizes Φ along the
solutions.
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Hence the ability to under-control the cascade system in (y1, y2)
allows us, via HUM:

to build a control that drives back the solution of the scalar equation
to equilibrium,

but also to select among all possible controls, a control that is also
robust for the selected measurement, to small perturbations of the
initial data.

We can study further generalizations as follows
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Dual bi-diagonal cascade systems of n equations

We consider the dual bi-diagonal cascade systems


u′′1 + Au1 = 0 ,
u′′i + Aui + Cii−1ui−1 = 0 ,2 ≤ i ≤ n ,
(ui ,u′i )(0) = (u0

i ,u
1
i ) for i = 1, . . .n ,

In view of applications to simultaneous control of certain systems, we
would like to determine sufficient (eventually also necessary)
conditions, so that observing only the last component, we can recover
the energy of initial data for all the components.

We give a necessary and sufficient condition on the observation
operator (of the last component) and on the coupling operators Cii−1
for i = 2, . . . ,n so that observing only the last component, it is
possible to recover suitable initial energies of all the n components of
the unknown.
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Theorem (A.-B. 2013, Advances in Differential Equations)

Assume that the observation operator B∗n satisfies a suitable
admissibility property for the forced scalar wave equation and that the
coupling operators on the sub-diagonal are partially coercive as seen
for 2-coupled cascade systems and satisfy suitable smoothness
properties.

Then the following observability inequality holds for T > T ∗n∫ T

0
||B∗nUn||2Gn

dt ≥ C(T )
( n∑

i=1

e1−n+i (Ui )(0)
)
,

holds if and only if B∗n and the coupling operators Cii−1 for i = 2, . . . ,n
satisfies an observability property (as given in the case of two
equations).
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The proof is a generalization of the proof for n = 2 (2-coupled
cascade systems).

It relies on a tricky induction argument and requires a careful analysis
of how the lack of observation of the n − 1 first components can be
compensated by the coupling terms. The induction argument invokes
several estimates with suitable asymptotic estimates for large times.

The multi-levels energy method is a constructive method. It uses the
property that one can derive from the original system set in the
natural energy space a hierarchy of related systems similar to the
original one, but set in weakened energy spaces.

The solutions of these hierarchic systems are linked to each other,
and this rich structure allows us to get positive controllability results.

The subclass of cascade bi-diagonal system can be seen as a toy
model to understand and capture essential properties which
guarantee controllability by a reduced number of controls.
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Note that we observe only the last component of the unknown and we
want to reconstruct the initial data of all the components of the
unknown.

We give a necessary and sufficient condition on the observation
operator and on the coupling coefficients on the sub-diagonal.

The "price" to pay is that going from the last equation towards the first
one, we can reconstruct the initial data of the corresponding
component, but in a hierarchy of weaker and weaker energy spaces.

Namely in H1−n+i × Hi−n for the component Ui = (ui ,u′i ). Hence, the
involved energy of Ui becomes weaker as i goes away from n which
is the rank of the observed component.
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This observability result leads to a exact controllability result for
cascade systems of order n.

We consider the controlled cascade system
y ′′i + Ayi + C∗i+1iyi+1 = 0 ,1 ≤ i ≤ n − 1 ,
y ′′n + Ayn = Bnvn ,

(yi , y ′i )(0) = (y0
i , y

1
i ) for i = 1, . . . ,n ,

where either Bn ∈ L(Gn; H) (bounded control operator) or
Bn ∈ L(Gn,H ′2) (unbounded control operator).

We set Y0 = (y0
1 , . . . , y

0
n , y1

1 , . . . , y
1
n ) and denote by

Y = (y1, . . . , yn, y ′1, . . . , y
′
n) the solution of the above system with initial

data Y0.
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Theorem

Assume the above hypotheses (for the observability result). We
define T ∗n > 0 as above.

(i) Let B∗n(wn,w ′n) = B∗nw ′n with Bn ∈ L(Gn,H). We set

X ∗−(n−1) = (Πn
i=1Hn−i+1)× (Πn

i=1Hn−i ) .

Then, for all T > T ∗n and all Y0 ∈ X ∗−(n−1), there exists a control
function vn ∈ L2((0,T ); Gn) such that the solution Y with initial
data Y0 satisfies Y (T ) = 0.

(ii) Let B∗n(wn,w ′n) = B∗nwn with Bn ∈ L(Gn,H ′2). We set

X ∗(n−1) = (Πn
i=1Hn−i )× (Πn

i=1Hn−i−1) .

Then, for all T > T ∗n and all Y0 ∈ X ∗(n−1), there exists a control
function vn ∈ L2((0,T ); Gn) such that the solution Y with initial
data Y0 satisfies Y (T ) = 0.
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Applications to heat or Schrödinger coupled systems in cascade

The above controllability properties can be transferred to
controllability properties for heat type systems or Schrödinger type
systems

thanks

to the transmutation method Seidman 1984, Phung 2001, Miller
2006, Ervedoza Zuazua 2011
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We now consider the following coupled system
eiθy1,t −∆y1 + cy2 = 0 in (0,T )× Ω ,

eiθy2,t −∆y2 = bv in (0,T )× Ω

yi = 0 in (0,T )× Γ for i = 1, . . . ,2 ,
yi (0) = y0

i in Ω for i = 1, . . . ,2 .

We set Y0 = (y0
1 , y

0
2 ). We recover 2-coupled heat (resp. Schrödinger)

cascade systems when θ = 0 (resp. θ = ±π/2) and diffusive coupled
cascade systems when θ ∈ (−π/2, π/2).

We can also consider n-coupled casade heat systems and apply our
previous results to get positive null controllability results with a single
control acting on the last equation.
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Then we have the following exact controllability result.

Corollary (A.-B. 2012, 2013)

We assume that the coefficient c satisfies the hypothesis (A2) for
some open subset O ⊂ Ω that satisfies (GCC). We also assume that
the coefficient b satisfies (A1) where the subset ω satisfies (GCC).
Then, the following properties hold

(i) The case θ ∈ (−π/2, π/2) (Heat type systems). We have for
all T > 0, and all Y0 ∈ (L2(Ω))2, there exist a control function
v ∈ L2((0,T ); L2(Ω)) such that the solution Y = (y1, y2) with
initial data Y0 satisfies Y (T ) = 0.

(ii) The case θ = ±π/2 (Schrödinger systems). We have for all
T > 0 and all Y0 ∈ H1

0 (Ω)× L2(Ω), there exist a control function
v ∈ L2((0,T ); L2(Ω)) such that the solution Y = (y1, y2) with
initial data Y0 satisfies Y (T ) = 0.
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Consider now the case of a boundary control:


eiθy1,t −∆y1 + cy2 = 0 in (0,T )× Ω ,

eiθy2,t −∆y2 = 0 in (0,T )× Ω

y1 = 0 in (0,T )× Γ , y2 = bv in (0,T )× Γ ,

yi (0) = y0
i in Ω for i = 1, . . . ,2 .
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We have the following exact controllability result.

Corollary (A.-B. 2012, 2013)

We assume that the coefficients c satisfies the above hypothesis for
some open subset O ⊂ Ω that satisfies (GCC). We also assume that
the coefficients b satisfies the above hypothesis where the subset Γ1
satisfies (GCC). Then we have

(i) The case θ ∈ (−π/2, π/2) (Heat type systems). We have for
all T > 0, and all Y0 ∈ (H−1(Ω))2, there exist a control function
v ∈ L2((0,T ); L2(Γ)) such that the solution Y = (y1, y2) with initial
data Y0 satisfies Y (T ) = 0.

(ii) The case θ = ±π/2 (Schrödinger systems). We have for all
T > 0 and all Y0 ∈ L2(Ω)× H−1(Ω), there exist a control function
v ∈ L2((0,T ); L2(Ω)) such that the solution Y = (y1, y2) with
initial data Y0 satisfies Y (T ) = 0.
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Geometric issues: at the present time, direct methods do not
allow to reach situations for empty intersections between the
control and coupling regions. Indirect methods (via
transmutation), allow us to handle situations for parabolic
cascade systems, for empty intersections, under (GCC) type
conditions. It is not a natural condition for heat type equations. Is
it possible to relax these conditions?
Different dynamics: for instance different diffusion operators?
Smoothness assumptions on the coupling coefficients. Our
results require smoothness of the coupling coefficients. Rosier
and de Teresa results are valid for 1-D wave cascade systems
(resp. n-dimensional torus for Schrödinger) for non smooth
coupling (characteristic function). Can our smoothness
assumptions be weakened, to handle for instance characteristic
functions?
Necessity of the partial coercivity of the coupling, necessity and
sufficiency of (A3)− A5) if partial coercivity of the coupling is
removed?
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What about more complex systems and further questions?

We can generalize the above results to mixed bi-diagonal and
non bi-diagonal cascade systems (with a larger band of non
vanishing coupling coefficients). The price is that we require then
"more" observation operators. Further generalizations are in
progress.

Extensions to more complex equations (in collaboration with Y.
Privat, E. Trélat and J. Valein) . . .

Extensions to other types of couplings (work in progress).

Work in progress for inverse problems (with P. Cannarsa and M.
Yamamoto).

Numerics and optimal design (in collaboration with Y. Privat and
E. Trélat).

Nonlinear systems (work in progress).
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Thanks for your attention
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