Low			
Rev	no	lds	5
nur	nb	er	
swin	۱m	ier	s

J. Lohéac

Introduction

Finite dimension

Controlability

Conclusion

Swimming at low Reynolds number

J. Lohéac, joint work with: A. Munnier, J.-F. Scheid and M. Tucsnak

IECL-BCAM

Benasque 2013

イロト イポト イヨト イヨト

Motivations

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimensior

Controlability

Conclusion

Swimming is seen as a control problem.

Given two points, does a fish can swim from one point to the other?

The motion of the fish is due to fluid-structure interactions.

イロト イポト イヨト イヨト

э

・ロン ・四 と ・ ヨン ・ ヨン

The Deformations I

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlability

Conclusion

All deformations are not interesting from the point of view of the motion.

Theorem (Scallop, Purcell, 197

For a periodic motion described by one parameter, the displacement on one period is null.

 \diamond

No motion \Rightarrow

in Stokes fluid

Taylor's experience

The Deformations II

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlability

Conclusion

Purcell's swimmer

Helical Deformation

 $\begin{array}{c} \mathsf{Motion} \\ \Rightarrow \end{array}$

in Stokes fluid

Taylor's experience

・ロト ・回ト ・ヨト ・ヨト

State of the art I

Low Reynolds number swimmers

J. Lohéac

Introduction

- Modelisation
- Finite dimension
- Controlability
- Conclusion

- Low Reynolds number:
 - Explicit solutions have been computed by J. Blake, 1973 and J. Happel and H. Brenner, 1983.
- Swimming model:
 - Experiences realised by G. Taylor, 1951.
 - Model and specificities of low Reynolds swimmers given by E. M. Purcell, 1977 and S. Childress, 1981.
 - First vision of the swimming problem as a control problem: A. Shapere and F. Wilczek, 1989.

・ロン ・四 ・ ・ ヨン ・ ヨン

State of the art II

Low Reynolds number swimmers

J. Lohéac

Introduction

- Modelisation
- Finite dimension
- Controlability
- Conclusion

Controllability results:

- Perfect fluid: T. Chambrion and A. Munnier, 2010.
- Stokes fluid, with a swimmer formed by *n* spheres: F. Alouges, A. DeSimone and A. Lefebvre, 2009.
- Stokes fluid, with a ciliated swimmer: J. San Martin, T. Takahashi and M. Tucsnak, 2007.

э

イロト イポト イヨト イヨト

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlability

Conclusion

2 A finite dimensional control problem

æ

・ロン ・四 と ・ ヨン ・ ヨン

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlabilit

Conclusion

Establishment of a Model

2 A finite dimensional control problem

3 Controlability

④ Conclusion

æ

・ロン ・四 と ・ ヨン ・ ヨン

Domain

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlability

Conclusion

Let $B^{\dagger}(t)$ be the domain filled by the swimmer, $\Sigma^{\dagger}(t)$ it's boundary and $F^{\dagger}(t) = \mathbb{R}^3 \setminus \overline{B^{\dagger}(t)}$ the domain filled by the fluid.

Figure: Domain

э

イロト イポト イヨト イヨト

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlability

Conclusion

Navier-Stokes Equations:

$$\rho\left(\frac{\partial \mathbf{u}^{\dagger}}{\partial t} + (\mathbf{u}^{\dagger} \cdot \nabla)\mathbf{u}^{\dagger}\right) + \nabla p^{\dagger} - \nu \Delta \mathbf{u}^{\dagger} = 0 \text{ in } F^{\dagger}(t)$$

div $\mathbf{u}^{\dagger} = 0 \text{ in } F^{\dagger}(t)$
(NS)

æ

イロト イヨト イヨト イヨト

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlability

Conclusion

Navier-Stokes Equations:

$$\rho \left(\frac{\partial \mathbf{u}^{\dagger}}{\partial t} + (\mathbf{u}^{\dagger} \cdot \nabla) \mathbf{u}^{\dagger} \right) + \nabla p^{\dagger} - \nu \Delta \mathbf{u}^{\dagger} = 0 \text{ in } F^{\dagger}(t)$$

div $\mathbf{u}^{\dagger} = 0 \text{ in } F^{\dagger}(t)$
(NS)

The fluid is assumed to be at rest at infinity and to glue the swimmer,

 $\mathbf{u}^{\dagger} = \mathbf{v}_{s}$ on $\Sigma(t)$,

where \mathbf{v}_s is the velocity of the swimmer.

3

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlabilit

Conclusion

Navier-Stokes Equations:

$$\rho \left(\frac{\partial \mathbf{u}^{\dagger}}{\partial t} + (\mathbf{u}^{\dagger} \cdot \nabla) \mathbf{u}^{\dagger} \right) + \nabla p^{\dagger} - \nu \Delta \mathbf{u}^{\dagger} = 0 \text{ in } F^{\dagger}(t)$$

div $\mathbf{u}^{\dagger} = 0 \text{ in } F^{\dagger}(t)$
(NS)

The fluid is assumed to be at rest at infinity and to glue the swimmer,

$$\mathbf{u}^{\dagger} = \mathbf{v}_{s}$$
 on $\Sigma(t)$,

where \mathbf{v}_s is the velocity of the swimmer.

Let $\sigma = \nu (\nabla \mathbf{u}^{\dagger} + (\nabla \mathbf{u}^{\dagger})^{T}) - p^{\dagger} \mathbf{I}_{3} \in \mathbb{R}^{3 \times 3}$ be the Cauchy stress tensor. The force exerted by the fluid on a part $d\Gamma$ of $\Sigma(t)$ is $\sigma \mathbf{n} d\Gamma$.

(日) (周) (三) (三)

The swimmer Deformation

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlability

Conclusion

The swimmer is located by the position of it's center of mass $\mathbf{h} \in \mathbb{R}^3$ and an angular position $\mathbf{R} \in O^+(3)$.

э

イロト イポト イヨト イヨト

The swimmer Deformation speed

٦

with:

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlability

Conclusion

The velocity of a point
$$x^{\dagger} = X^{\dagger}(y, t)$$
 of $B^{\dagger}(t)$ is:
 $\mathbf{v}_{S} = \dot{\mathbf{h}} + R\boldsymbol{\omega} imes (x^{\dagger} - \mathbf{h}) + R \mathbf{w}(x^{\dagger}, t)$,

• **w** the non-rigid velocity of the swimmer:

$$\mathbf{w}(x^{\dagger},t) = \dot{X}\left(X(.,t)^{-1}(R^{T}(x^{\dagger}-\mathbf{h}(t))), t\right).$$

• ω the angular velocity:

$$\dot{R} = RA(\omega)$$
,
where, $A(\omega) = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix}$.

The swimmer Deformation constraints

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlability

Conclusion

The deformation X(t) must be:

• a C^1 -diffeomorphism of \mathbb{R}^3 ;

and must preserve:

• the mass:

$$\longrightarrow \qquad
ho(\cdot,t) = rac{1}{\left|\det\left(\operatorname{Jac} X(\cdot,t)
ight)
ight|}$$

$$0 = \int_{B(t)} \rho(x,t) x \, \mathrm{d}x;$$

• the angular momentum:

$$0 = \int_{\mathcal{B}(t)} \rho(x,t) x \times \dot{X} \left(X(.,t)^{-1}(x), t \right) \, \mathrm{d}x \, .$$

◆□> ◆圖> ◆臣> ◆臣>

The swimmer Equation of motion

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlability

Conclusion

Newton's principle gives:

$$m\ddot{\mathbf{h}} = \int_{\Sigma^{\dagger}(t)} \sigma \mathbf{n}^{\dagger} d\Gamma,$$

$$\frac{\mathrm{d} J\omega}{\mathrm{d} t} = \int_{\Sigma^{\dagger}(t)} (x - \mathbf{h}) \times \sigma \mathbf{n}^{\dagger} \mathrm{d} x,$$
(PFD)

イロト イヨト イヨト イヨト

with J(t) the inertial matrix at time t.

The coupled problem

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlability

Conclusion

In dimensionless variables, taking the formal limit $L \rightarrow 0$, we obtain the *quasi-static* problem:

$$\begin{cases} 0 = \nabla p^{\dagger} - \Delta \mathbf{u}^{\dagger}, & \text{in } F^{\dagger}(t) \\ 0 = \operatorname{div} \mathbf{u}^{\dagger}, & \text{in } F^{\dagger}(t) \\ & & \\ & & \\ & & \\ & & |\mathbf{x}| \to \infty} \mathbf{u}^{\dagger}(x) = 0 \end{cases}$$
(S[†])

$$\mathbf{u}^{\dagger} = \dot{\mathbf{h}} + R\boldsymbol{\omega} \times (\mathbf{x} - \mathbf{h}) + R\mathbf{w}, \text{ on } \Sigma^{\dagger}(t)$$
(BC[†])
$$\begin{cases} 0 = \int_{\Sigma^{\dagger}(t)} \sigma(\mathbf{u}^{\dagger}, p^{\dagger}) \mathbf{n}^{\dagger} d\Gamma \\ 0 = \int_{\Sigma^{\dagger}(t)} (\mathbf{x} - \mathbf{h}) \times \sigma(\mathbf{u}^{\dagger}, p^{\dagger}) \mathbf{n}^{\dagger} d\Gamma \end{cases}$$
(CM[†])

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Examples

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlability

Conclusion

• Ciliated organism:

- X is constant but $\mathbf{w} \neq 0$.
 - 2007: J. San Martin, T. Takahashi and M. Tucsnak proved that with six independent controls on **w**, the swimmer is exactly controllable.
 - 2008: M. Sigalotti and J.-C. Vivalda proved that generically with respect to the shape of the swimmer only three control are need.

• Golestanian's swimmer:

B(t) is the union of three aligned spheres.

• 2009: F. Alouges, A. DeSimone and A. Lefebvre proved the controllability of this swimmer and studied optimal controls.

소리가 소문가 소문가 소문가 ...

Equations in the axi-symmetric case

Low Reynolds number swimmers

J. Loheac

Introduction

Modelisation

Finite dimension

Controlability

Conclusion

The system (S^{$$\dagger$$})-(BC ^{\dagger})-(CM ^{\dagger}) in the axi-symmetric case writes:

$$\begin{cases} 0 = \nabla p - \Delta \mathbf{u}, & \text{in } F(t), \\ 0 = \operatorname{div} \mathbf{u}, & \operatorname{in} F(t), \\ & \lim_{|\mathbf{x}| \to \infty} \mathbf{u}(x) = 0 \end{cases}$$
(S)

$$\mathbf{u} = \dot{h}\mathbf{e}_z + \mathbf{w}$$
, on $\Sigma(t)$, (BC)

$$0 = \left(\int_{\Sigma(t)} \sigma(\mathbf{u}, p) \mathbf{n} \, \mathrm{d}\Gamma \right) \cdot \mathbf{e}_z \,, \tag{CM}$$

イロン イヨン イヨン イヨン

with $\mathbf{w}(x,t) = \dot{X} (X(\cdot,t)^{-1}(x),t).$

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisatior

Finite dimension

Controlability

Establishment of a Model

2 A finite dimensional control problem

3 Controlability

4 Conclusion

æ

<ロ> (日) (日) (日) (日) (日)

ODE I

Low Reynolds number swimmers

J. Lohéac

Introduction

iviouensation

Finite dimension

Controlability

Conclusion

Let assume that the diffeomorphism X is given by:

$$X(t,x) = x + \sum_{i=1}^n \mathbf{s}_i(t) D_i(x) \,.$$

One can redefine X by $X(\mathbf{s}) = I_D + \sum_{i=1}^n \mathbf{s}_i D_i$. **s** is the deformation parameter.

For every $i \in \{1, ..., n\}$, we define $(\mathbf{v}_i(\mathbf{s}), q_i(\mathbf{s}))$ the Stokes solution with boundary condition $\mathbf{v}_i(\mathbf{s}) = D_i \circ X(\mathbf{s})^{-1}$ on $\Sigma(\mathbf{s}) = X(\mathbf{s})(\Sigma)$. We also define $(\mathbf{v}_0(\mathbf{s}), q_0(\mathbf{s}))$ the Stokes solution with boundary condition $\mathbf{v}_i(\mathbf{s}) = \mathbf{e}_z$ on $\Sigma(\mathbf{s})$.

э

イロト 不得 トイヨト イヨト

ODE II

Expanding (CM), we obtain:

Low Reynolds number swimmers

J. Lohéac

Introduction

Finite dimension

Controlability

Conclusion

$$\begin{split} \int_{\Sigma(\mathbf{s})} \sigma(\mathbf{v}_0(\mathbf{s}), q_0(\mathbf{s})) \, \mathrm{d}\Gamma \cdot \mathbf{e}_z \, \dot{h} \\ &= -\sum_{i=1}^n \int_{\Sigma(\mathbf{s})} \sigma(\mathbf{v}_i(\mathbf{s}), q_i(\mathbf{s})) \, \mathrm{d}\Gamma \cdot \mathbf{e}_z \, \dot{\mathbf{s}}_i \, . \end{split}$$

Setting $f_i(\mathbf{s}) = -\frac{\int_{\Sigma(\mathbf{s})} \sigma(\mathbf{v}_i, q_i) \, \mathrm{d}\Gamma \cdot \mathbf{e}_z}{\int_{\Sigma(\mathbf{s})} \sigma(\mathbf{v}_0, q_0) \, \mathrm{d}\Gamma \cdot \mathbf{e}_z}$, we have:

$$\dot{h} = \sum_{i=1}^{n} f_i(s) \lambda_i ,$$

 $\dot{s} = \lambda .$

æ

イロト イヨト イヨト イヨト

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisatio

Finite dimension

Controlability

Conclusion

Establishment of a Model

2 A finite dimensional control problem

3 Controlability

4 Conclusion

æ

<ロ> (日) (日) (日) (日) (日)

Chow's theorem I

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisation

Finite dimension

Controlability

Conclusion

Let us consider a dynamical system under the form:

$$\dot{z} = \sum_{i=1}^{n} f_i(z) u_i , \qquad (*)$$

set on \mathbb{R}^n .

We associated to this system the Lie algebra $\text{Lie}\{f_1, \ldots, f_n\}$ which is the smallest Lie algebra containing $\{f_1, \ldots, f_n\}$ stable for the Lie bracket:

$$egin{array}{rcl} [f,g] \, : \, \mathbb{R}^n & o & \mathbb{R}^n \ & z & \mapsto & \mathrm{D}_z g \cdot f(z) - \mathrm{D}_z f \cdot g(z) \, . \end{array}$$

э

Chow's theorem II

Theorem (Chow)

Low Reynolds number swimmers

J. Lohéac

Introduction Modelisation

Finite dimensior

Controlability

Conclusion

Let assume that $f_i \in C^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ and $u_i(t) \in B_{\mathbb{R}^m}(0, r)$ (r > 0). If for every $z \in \mathbb{R}^n$, $\operatorname{Lie}_z\{f_1, \ldots, f_m\} = \mathbb{R}^n$, then the system (*) is controllable.

3

소리가 소문가 소문가 소문가 ...

Control result

Low Reynolds number swimmers

J. Lohéac

Introduction Modelisation

Finite dimension

Controlability

Conclusion

Let consider the control problem:

Problem

Given $h^f \in \mathbb{R}^*$ does-it exists T > 0 and $\lambda \in C^1([0, T], \mathbb{R}^n)$ such that:

 $h(T) = h^f$ and $\mathbf{s}(T) = 0$,

with the initial conditions:

h(0) = 0 and s(0) = 0?

э

◆□> ◆圖> ◆ヨ> ◆ヨ>

Control result

Low Reynolds number swimmers

J. Lohéac

Introduction Modelisation

Finite dimension

Controlability

Conclusion

Let consider the control problem:

Problem

Given $h^f \in \mathbb{R}^*$ does-it exists T > 0 and $\lambda \in C^1([0, T], \mathbb{R}^n)$ such that:

 $h(T) = h^f$ and $\mathbf{s}(T) = 0$,

with the initial conditions:

$$h(0) = 0$$
 and $\mathbf{s}(0) = 0$?

Using shape differentiation, explicit solution (given by Lamb) and Chow's theorem, we prove that the answer is positive for the elementary deformations given by :

$$D_1(r,\theta,\phi) = P_2(\cos\theta)\chi(r)\mathbf{e}_r(\theta,\phi),$$

$$D_2(r,\theta,\phi) = P_3(\cos\theta)\chi(r)\mathbf{e}_r(\theta,\phi),$$

Example of control

J. Lohéac

Introduction Modelisatior Finite

dimensior

Controlability

Conclusion

Low Reynolds number swimmers

J. Lohéac

Introduction

Modelisatio

Finite dimension

Controlability

Conclusion

Establishment of a Model

2 A finite dimensional control problem

3 Controlability

æ

<ロ> (日) (日) (日) (日) (日)

Conclusion Other results

Low Reynolds number swimmers

- J. Lohéac
- Introduction
- Modelisation
- Finite dimensior
- Controlability
- Conclusion

- Controllability holds if we had rotations, we then need four elementary deformations.
- Generically with respect to the shape, we can do motion planning (both for the rigid and the non-rigid deformations).
- There exists optimal controls. In the axi-symmetric case, we looked at the time optimal control problem.

イロト イポト イヨト イヨト

Conclusion Open problems

Low Reynolds number swimmers

J. Lohéac

- Introduction
- Modelisation
- Finite dimensior
- Controlability
- Conclusion

- Minimal number of independent controls?
- Swimming in a bounded domain?
- Swimming with a flagella?
- Collective swimming?
- If we had inertia to the system?
- Does microorganisms try to minimize a cost function? Which one?
- Numerical simulations?

э

・ロン ・四 ・ ・ ヨン ・ ヨン