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J. Lohéac (IECL–BCAM) Low Reynolds number swimmers 1/29



Low
Reynolds
number

swimmers

J. Lohéac

Introduction

Modelisation

Finite
dimension

Controlability

Conclusion

Motivations

Swimming is seen as a con-
trol problem.

Given two points, does a fish
can swim from one point to
the other?

The motion of the fish is due

to fluid-structure interactions.
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The fluid

Reynolds number: Re =
ρUL

µ
.

Re << 1 Re >> 1
- Re

Stokes Navier-Stokes Euler

L (cm) U (cm.s−1) T (s) Re

Bacteria 10−5 10−3 10−4 10−5

Spermatozoon 10−3 10−2 10−2 10−3

Fish 50 100 0.5 5.104

Pigeon 25 103 5.10−1 105
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The Deformations I

All deformations are not interesting from the point of view of
the motion.

Theorem (Scallop, Purcell, 1977)

For a periodic motion described by one parameter, the
displacement on one period is null.

No motion
⇒

in Stokes fluid

Taylor’s experience
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The Deformations II

Purcell’s swimmer
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Helical

Deformation

Motion
⇒

in Stokes fluid

Taylor’s experience
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State of the art I

Low Reynolds number:

Explicit solutions have been computed by J. Blake, 1973
and J. Happel and H. Brenner, 1983.

Swimming model:

Experiences realised by G. Taylor, 1951.
Model and specificities of low Reynolds swimmers given by
E. M. Purcell, 1977 and S. Childress, 1981.

First vision of the swimming problem as a control problem:
A. Shapere and F. Wilczek, 1989.
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State of the art II

Controllability results:

Perfect fluid: T. Chambrion and A. Munnier, 2010.

Stokes fluid, with a swimmer formed by n spheres:
F. Alouges, A. DeSimone and A. Lefebvre, 2009.

Stokes fluid, with a ciliated swimmer: J. San Martin,
T. Takahashi and M. Tucsnak, 2007.
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1 Establishment of a Model

2 A finite dimensional control problem

3 Controlability

4 Conclusion
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Domain

Let B†(t) be the domain filled by the swimmer, Σ†(t) it’s

boundary and F †(t) = R3 \B†(t) the domain filled by the fluid.

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

B†(t)

Σ†(t)

n†(t)

F †(t)

Figure: Domain
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The fluid

Navier-Stokes Equations:

ρ

(
∂u†

∂t
+ (u† · ∇)u†

)
+∇p† − ν∆u† = 0 in F †(t)

div u† = 0 in F †(t)
(NS)

The fluid is assumed to be at rest at infinity and to glue the
swimmer,

u† = vs on Σ(t) ,

where vs is the velocity of the swimmer.

Let σ = ν
(
∇u† + (∇u†)T )− p†I3 ∈ R3×3 be the Cauchy stress

tensor. The force exerted by the fluid on a part dΓ of Σ(t) is
σndΓ.
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The swimmer
Deformation

The swimmer is located by the position of it’s center of mass
h ∈ R3 and an angular position R ∈ O+(3).
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The swimmer
Deformation speed

The velocity of a point x† = X †(y , t) of B†(t) is:

vS = ḣ + Rω × (x† − h) + R w(x†, t) ,

with:

w the non-rigid velocity of the swimmer:

w(x†, t) = Ẋ
(

X (., t)−1
(
RT (x† − h(t))

)
, t
)
.

ω the angular velocity:

Ṙ = RA(ω) ,

where, A(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
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The swimmer
Deformation constraints

The deformation X (t) must be:

a C 1-diffeomorphism of R3;

and must preserve:

the mass:

−→ ρ(·, t) =
1∣∣det(JacX (·, t)

)∣∣
the position of the mass center:

0 =

∫
B(t)

ρ(x , t)x dx ;

the angular momentum:

0 =

∫
B(t)

ρ(x , t)x × Ẋ
(

X (., t)−1(x), t
)
dx .
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The swimmer
Equation of motion

Newton’s principle gives:

mḧ =

∫
Σ†(t)

σn† dΓ ,

d Jω

dt
=

∫
Σ†(t)

(x − h)× σn† dx ,

(PFD)

with J(t) the inertial matrix at time t.
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The coupled problem

In dimensionless variables, taking the formal limit L→ 0, we
obtain the quasi-static problem:

0 = ∇p† −∆u† , in F †(t)
0 = div u† , in F †(t)

lim
|x|→∞

u†(x) = 0

(S†)

u† = ḣ + Rω × (x − h) + Rw , on Σ†(t) (BC†)
0 =

∫
Σ†(t)

σ(u†, p†)n† dΓ

0 =

∫
Σ†(t)

(x− h)× σ(u†, p†)n† dΓ
(CM†)

J. Lohéac (IECL–BCAM) Low Reynolds number swimmers 16/29



Low
Reynolds
number

swimmers

J. Lohéac
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Examples

Ciliated organism:
X is constant but w 6= 0.

2007: J. San Martin, T. Takahashi and M. Tucsnak proved
that with six independent controls on w, the swimmer is
exactly controllable.
2008: M. Sigalotti and J.-C. Vivalda proved that
generically with respect to the shape of the swimmer only
three control are need.

Golestanian’s swimmer:
B(t) is the union of three aligned spheres.

2009: F. Alouges, A. DeSimone and A. Lefebvre proved
the controllability of this swimmer and studied optimal
controls.
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Equations in the axi-symmetric case

The system (S†)-(BC†)-(CM†) in the axi-symmetric case writes:
0 = ∇p −∆u , in F (t) ,
0 = div u , in F (t) ,

lim
|x|→∞

u(x) = 0

(S)

u = ḣez + w , on Σ(t) , (BC)

0 =

(∫
Σ(t)

σ(u, p)ndΓ

)
· ez , (CM)

with w(x , t) = Ẋ
(
X (·, t)−1(x), t

)
.
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ODE I

Let assume that the diffeomorphism X is given by:

X (t, x) = x +
n∑

i=1

si (t)Di (x) .

One can redefine X by X (s) = ID +
∑n

i=1 siDi . s is the
deformation parameter.
For every i ∈ {1, . . . , n}, we define

(
vi (s), qi (s)

)
the Stokes

solution with boundary condition vi (s) = Di ◦ X (s)−1 on
Σ(s) = X (s)(Σ).
We also define

(
v0(s), q0(s)

)
the Stokes solution with boundary

condition vi (s) = ez on Σ(s).
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ODE II

Expanding (CM), we obtain:∫
Σ(s)

σ
(
v0(s), q0(s)

)
dΓ · ez ḣ

= −
n∑

i=1

∫
Σ(s)

σ
(
vi (s), qi (s)

)
dΓ · ez ṡi .

Setting fi (s) = −

∫
Σ(s) σ(vi , qi )dΓ · ez∫
Σ(s) σ(v0, q0) dΓ · ez

, we have:

ḣ =
n∑

i=1

fi (s)λi ,

ṡ = λ .
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Chow’s theorem I

Let us consider a dynamical system under the form:

ż =
n∑

i=1

fi (z)ui , (*)

set on Rn.
We associated to this system the Lie algebra Lie{f1, . . . , fn}
which is the smallest Lie algebra containing {f1, . . . , fn} stable
for the Lie bracket:

[f , g ] : Rn → Rn

z 7→ Dzg · f (z)−Dz f · g(z) .
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Chow’s theorem II

Theorem (Chow)

Let assume that fi ∈ C∞(Rn,Rn) and ui (t) ∈ BRm(0, r)
(r > 0).
If for every z ∈ Rn, Liez{f1, . . . , fm} = Rn, then the system (*)
is controllable.
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Control result

Let consider the control problem:

Problem

Given hf ∈ R∗ does-it exists T > 0 and λ ∈ C 1([0,T ],Rn)
such that:

h(T ) = hf and s(T ) = 0 ,

with the initial conditions:

h(0) = 0 and s(0) = 0 ?

Using shape differentiation, explicit solution (given by Lamb)
and Chow’s theorem, we prove that the answer is positive for
the elementary deformations given by :

D1(r , θ, φ) = P2(cos θ)χ(r)er (θ, φ) ,

D2(r , θ, φ) = P3(cos θ)χ(r)er (θ, φ) .
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Introduction

Modelisation

Finite
dimension

Controlability

Conclusion

Control result

Let consider the control problem:

Problem

Given hf ∈ R∗ does-it exists T > 0 and λ ∈ C 1([0,T ],Rn)
such that:

h(T ) = hf and s(T ) = 0 ,

with the initial conditions:

h(0) = 0 and s(0) = 0 ?

Using shape differentiation, explicit solution (given by Lamb)
and Chow’s theorem, we prove that the answer is positive for
the elementary deformations given by :

D1(r , θ, φ) = P2(cos θ)χ(r)er (θ, φ) ,

D2(r , θ, φ) = P3(cos θ)χ(r)er (θ, φ) .
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Example of control
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Conclusion
Other results

Controllability holds if we had rotations, we then need four
elementary deformations.

Generically with respect to the shape, we can do motion
planning (both for the rigid and the non-rigid
deformations).

There exists optimal controls. In the axi-symmetric case,
we looked at the time optimal control problem.
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Conclusion
Open problems

Minimal number of independent controls?

Swimming in a bounded domain?

Swimming with a flagella?

Collective swimming?

If we had inertia to the system?

Does microorganisms try to minimize a cost function?
Which one?

Numerical simulations?
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