Weight one modular forms of S_4 -type

Joan-C. Lario

Benasc 2013 (± 25)

Benasc 2013 | Benasc 2013 (± 25)

イロト イヨト イヨト イヨト

Introduction: Deligne-Serre

There is a one-to-one correspondence between:

representations $\rho\colon {\rm Gal}(\overline{\mathbb Q}/\mathbb Q)\to {\rm GL}(2,\mathbb C)$ continuous odd irreducible and

weight one modular newforms
$$F(z) = \sum_{n=1}^{\infty} a_n q^n \in S_1(N, \varepsilon).$$

That correspondence satisfies: for all primes $p \nmid N$

$$\det(1-\rho(\operatorname{Frob}_p)T)=T^2-a_pT+\varepsilon(p).$$

(日) (同) (三) (三) (三)

Introduction

Given a Galois representation ρ : $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL(2,\mathbb{C})$ continuous, odd, and irreducible, the image of its associate projective representation

 $\overline{\rho}$: $\mathsf{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathsf{PGL}(2,\mathbb{C})$

has to be

$$\mathsf{Image}(\overline{\rho}) \simeq \mathcal{D}_n, \mathcal{A}_4, \mathcal{A}_5, \mathcal{S}_4.$$

The corresponding newform splits in

 $\begin{cases} \text{Theta series case:} & \text{when } \text{Image}(\overline{\rho}) \simeq \mathcal{D}_n \\ \text{Exotic cases:} & \text{when } \text{Image}(\overline{\rho}) \simeq \mathcal{A}_4, \mathcal{A}_5, \mathcal{S}_4. \end{cases}$

Goal (25 years ago) was to compute $F(z) = \sum_{n=1}^{\infty} a_n q^n \in S_1(N, \varepsilon)$ arising from the exotic octahedral case S_4 .

Octahedral weight one modular forms

• Input: Given K/\mathbb{Q} an S_4 -extension, together with

 $\overline{
ho}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{Gal}(K/\mathbb{Q}) \simeq \mathbb{S}_4 \hookrightarrow \operatorname{PGL}(2,\mathbb{C})$

and an integer $m \geq 2$.

• Output: Decide whether an odd lifting ρ : $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL(2,\mathbb{C})$ of $\overline{\rho}$ exists with a certain image. If so, then return the level N and the sequence

$$\{a_1, a_2, a_3, a_4, \dots, a_m\}$$

such that $F(z) = \sum_{n=1}^{\infty} a_n q^n \in S_1(N, \varepsilon)$ is the exotic octahedral modular newform attached to ρ .

Liftings

Given a projective representation

$$\overline{
ho}$$
: Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{PGL}(2,\mathbb{C})$,

in case that there exists a linear lifting

$$\begin{array}{ccc} & \operatorname{GL}(2,\mathbb{C}) \\ & \swarrow & & \swarrow \\ \overline{\rho} \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) & \to & \operatorname{PGL}(2,\mathbb{C}) \end{array}$$

all the others liftings are $\rho \otimes \chi$, where $\chi \colon \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{C}^*$ is any character.

Thanks to a theorem of Tate, $\overline{\rho}$ has always linear liftings. But if we impose a certain group as image of ρ , then there is an obstruction to its existence.

イロト イポト イヨト イヨト

Serre's obstruction

We consider the Galois embedding problem

$$\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & & \\ 1 & \longrightarrow & C_2 & \longrightarrow & \tilde{S}_4 & \xrightarrow{\pi} & & S_4 & \longrightarrow & 1 \end{array}$$

where \tilde{S}_4 is the 2-cover of S_4 such that the preimage of transpositions are involutions. There are isomorphisms $\tilde{S}_4 \simeq GL(2,\mathbb{F}_3)$ and $S_4 \simeq PGL(2,\mathbb{F}_3)$. It turns out that \tilde{S}_4 admits two (complex conjugate) irreducible linear representations.

A solution to the embedding problem (if exists) is a morphism

$$ho: \operatorname{\mathsf{Gal}}(\overline{\mathbb{Q}}/\mathbb{Q})
ightarrow \widetilde{\mathbb{S}}_4$$

with $\overline{
ho} = \pi \circ
ho$. Serre gives a formula to compute the obstruction.

Serre's obstruction

Let $f \in \mathbb{Q}[x]$ be a degree 4 polynomial with Galois group $Gal(f) \simeq S_4$. Let x_i be the roots of f, and denote

$$K_1 = \mathbb{Q}(x_1), \qquad K = K_1^{gal} = \mathbb{Q}(x_1, x_2, x_3, x_4).$$

The embedding problem $\tilde{S}_4 \to S_4 \simeq \text{Gal}(K/\mathbb{Q})$ is solvable if and only if the element in the Brauer group of \mathbb{Q} given by

$$\mathsf{e}_{\mathcal{K}} := w(\mathsf{Tr}_{\mathcal{K}_1/\mathbb{Q}}(X^2)) \otimes (2,d)$$

is trivial. Here, w denotes the Witt invariant and (2, d) the Hilbert symbol where $d = \text{disc}(K_1/\mathbb{Q})$.

Bayer-Frey give a convenient formula to compute the local invariants $e_{K,p}$ for odd primes in terms of the ramification type of p in K_1 .

Crespo's construction

Assume that the above embedding problem is solvable. Then, a field solution is

$$\tilde{K} := K(\sqrt{\gamma}),$$

where γ is a non-zero coordinate of the spinor norm of an element in a suitable Clifford algebra. More precisely,

$$\gamma = \det \left(\begin{pmatrix} 1 & x_1 & x_1^2 & x_1^3 \\ 1 & x_2 & x_2^2 & x_2^3 \\ 1 & x_3 & x_3^2 & x_3^3 \\ 1 & x_4 & x_4^2 & x_4^3 \end{pmatrix} \cdot P \cdot \begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & & 1/2 & 1/2 \\ & & \sqrt{d}/2 & -\sqrt{d}/2 \end{pmatrix} + \mathsf{Id} \right) \neq \mathsf{0}.$$

Here, $P \in \mathcal{M}_4(\mathbb{Q})$ such that $P^t \operatorname{Tr}(x_i x_j) P = \operatorname{diag}(1, 1, 2, 2d)$. Moreover, all solutions are $\tilde{K} = K(\sqrt{c\gamma})$ with $c \in \mathbb{Q}^*$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The newform

Let $p \nmid d$ be a prime. Denote by $\tilde{\pi}_p$ the conjugacy class of the Frobenius elements for p in \tilde{S}_4 which is mapped to the conjugacy class π_p in S_4 . Then a_p^2 is determined by π_p and the following table holds:

$p\mathscr{O}_{K_1}$	π_p	a_p^2	$ ilde{\pi}_{ m p}$
$\mathfrak{P}_1\mathfrak{P}_1'\mathfrak{P}_1''\mathfrak{P}_1'''$	1A	4	$1 ilde{A}, 2 ilde{A}$
$\mathfrak{P}_{2}\mathfrak{P}_{2}^{'}$	2 <i>A</i>	0	4Ã
$\mathfrak{P}_1\mathfrak{P}_1^{'}\mathfrak{P}_2$	2 <i>B</i>	0	2 <i>Ã</i>
$\mathfrak{P}_1\mathfrak{P}_3$	3 <i>A</i>	1	$3 ilde{A}, 6 ilde{A}$
\mathfrak{P}_4	4 <i>A</i>	-2	$8 ilde{A}, 8 ilde{B}$

The character table of \tilde{S}_4 gives:

The newform

The element γ helps to determine the sign.

$p\mathcal{O}_{K_1}$	π_p	a _p	$ ilde{\pi}_{p}$
$\mathfrak{P}_1\mathfrak{P}_1^{'}\mathfrak{P}_1^{\prime\prime}\mathfrak{P}_1^{\prime\prime\prime}$	1A	2, -2	$1 ilde{A}, 2 ilde{A}$
$\mathfrak{P}_1\mathfrak{P}_3$	3 <i>A</i>	-1, 1	$3 ilde{A}, 6 ilde{A}$
\mathfrak{P}_4	4 <i>A</i>	$i\sqrt{2}, -i\sqrt{2}$	$8 ilde{A}, 8 ilde{B}$

•
$$\tilde{\pi}_p = 1\tilde{A}$$
, $3\tilde{A}$ if and only if $\left(\frac{\gamma}{\mathfrak{P}_1}\right) = 1$
• $\tilde{\pi}_p = 8\tilde{A}$ if and only if $\gamma^{(p-1)/2} \equiv b_s \mod \mathfrak{P}_4$, where

$$b_s = -\frac{1}{2} + \left(\gamma^{(321)} - \gamma^{(123)}\right)/2\gamma.$$

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Example

The problem is solvable for the splitting field $K = \mathbb{Q}(x_1, x_2, x_3, x_4)$ of $f = x^4 - 2x - 1$. The element γ can be taken as

$$\gamma = 3(x_1^3x_2^3 - x_2^2 - x_1^2x_2 + x_1x_2 + x_2) + x_1^3 - 2x_1^2 + 4x_1.$$

The corresponding newform F has level $2^3 \cdot 43$.

p	$ ilde{\pi}_p$	ap
487,619,719	1Ã	2
173,827,857	2Ã	-2
19, 37, 71, 113, 137, 149, 157, 191, 199	2Ã	0
11, 17, 53, 67, 97, 101, 103, 127, 193	3Ã	-1
47, 59, 79, 107, 181, 197	4Ã	0
13, 23, 31, 41, 83, 109, 139, 167	6Ã	1
7,29,61,89,179	8Ã	$i\sqrt{2}$
3, 5, 73, 151, 163	8Ã	$-i\sqrt{2}$