

Many-Body effects in the Near-Field Optics of Graphene

James P.F. LeBlanc Max-Planck Institute for the Physics of Complex Systems Dresden, Germany

Elisabeth Nicol, University of Guelph (Guelph-Waterloo Physics Institute) Jules Carbotte, Phillip Ashby Mcmaster University

Overview

Many-Body Interactions

- Electron-electron interaction (EEI)
 - Plasmarons in spectral function and DOS
- Electron-phonon interaction (EPI)
 - Impact on energy and DOS
- Near-Field Optics Current-Current Correlation Function
 - Finite Momentum Optical Conductivity (Longitudinal)
 - Removal of Pauli Blocking
 - Correspondence to Quasiparticle Peaks
 - Many-Body, EEI and EPI

<u>Strain</u> (arXiv:1303.0131)

- EEI Correlations
 - Single Particle Spectral Density
 - Plamaron Ring Structure

Observation of Plasmarons

Plasmaron 'Ring' used to extract effective fine structure

How do plasmaron features manifest in the electronic density of states?

How does one separate EEI from other interactions?

3/30

Electron-Phonon Interactions (EPI)

Nicol et al. PRB 80, 081415(R) (2009) Nicol et al. PRB 81, 045419 (2010)

4/30

Modified Collective Modes

5/30

 $E_k = \epsilon_k + \operatorname{Re}\Sigma(k,\omega)$

 $G_0 W-RPA$ $\Sigma(k,\omega) = \Sigma^{EEI}(k,\omega) + \Sigma^{EPI}(\omega)$

Real part of phonon self energy can shift spectral peaks. Particularly evident on the lower Dirac cone.

G₀W-RPA -

Phys. Rev. B **77**, 081411(R) (2008) <u>Hwang and Das Sarma</u> Phys. Rev. B **75**, 205418 (2007) Phys. Rev. B **77**, 081412(R) (2008)

<u>Polini et al.</u>

J.P.F. LeBlanc et al. Phys. Rev. B 84, 165448 (2011) Benasque 2013

Electronic Density of States

Electron-electron interactions (EEI)

- -Splitting of Dirac points into two
- -Each has parabolic signature in $N(\boldsymbol{\varpi})$
- -Slope modified with increasing $\boldsymbol{\alpha}$
- -Features scale with chemical potential, μ_0

-Verified, Principi et al S.S. Comm. 152, 1456 (2012)

EEI+EPI

- N(0) can be significantly depressed from bare case due to EEI
- EPI does not change N(0)
- EPI increases the slope, opposite to EEI

J.P.F. LeBlanc et al. Phys. Rev. B 84, 165448 (2011) Benasque 2013

Density-Density vs Current-Current

Generally Exploited in Standard Optics

$$\Pi(q \to 0, \omega) = \frac{gq^2}{8\pi\hbar\omega} \left[\frac{2\mu}{\hbar\omega} + \frac{1}{2} \ln \left| \frac{2\mu - \hbar\omega}{2\mu + \hbar\omega} \right| - i\frac{\pi}{2} \Theta(\hbar\omega - 2\mu) \right]$$

$$\sigma(\omega) = \lim_{q \to 0} ie^2 \frac{\omega \Pi(\mathbf{q}, \omega)}{\mathbf{q}^2}$$

Non-Interacting Theory

7/30

Basov et al. Nature Phys. 4, 532 (2008) Benasque 2013

Key Difference in Band Overlap

Interacting Self-Energy in $A(\mathbf{k}, \omega)$

0

$$A(\mathbf{k},\omega) = \frac{1}{\pi} \frac{\left| \operatorname{Im} \Sigma_{s}(\mathbf{k},\omega) \right|}{\left[\omega - \epsilon_{k}^{s} - \operatorname{Re} \Sigma_{s}(\mathbf{k},\omega) \right]^{2} + \left[\operatorname{Im} \Sigma_{s}(\mathbf{k},\omega) \right]^{2}}$$

$$\frac{\sigma(\boldsymbol{q},\omega)}{\sigma_0} = \frac{8}{\omega} \int_{-\omega}^{\bullet} d\omega' \int \frac{d^2\boldsymbol{k}}{2\pi} \sum_{s,s'=\pm} F_{ss'}(\phi) A^s(\boldsymbol{k},\omega') A^{s'}(\boldsymbol{k}+\boldsymbol{q},\omega'+\omega)$$

Never Equivalent for finite q unless no-scattering

A. Scholz et al. Phys. Rev. B 83, 235409 (2011) Benasque 2013

Longitudinal-Transverse

$$\sigma_{\mu\nu}(\mathbf{q},\omega) = \frac{q_{\mu}q_{\nu}}{\mathbf{q}^{2}}\sigma^{L}(\mathbf{q},\omega) + \left(\delta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{\mathbf{q}^{2}}\right)\sigma^{T}(\mathbf{q},\omega)$$

Convenient Basis

Longitudinal - Conductivity in direction of q-scattering $\sigma_{xx}(\mathbf{q},\omega) = \frac{q_x q_x}{\mathbf{q}^2} \sigma^L(\mathbf{q},\omega) = \sigma^L(\mathbf{q},\omega)$ $k_{y} \underbrace{\vec{q}}_{\vec{k}, \dots, \vec{k} + \vec{q}}_{\vec{k}, \dots, \vec{k} + \vec{q}} (\text{Jinder the second sec$

Transverse - Conductivity perpendicular to direction of q-scattering

$$\sigma_{yy}(\mathbf{q},\omega) = \sigma^{T}(\mathbf{q},\omega)$$

Experiment May Average Over Directions of q

Focus on Strong Features (Longitudinal)

Pauli Blocking

Vector Nesting

In limit of *q* to zero, this is Drude Response

Non-Interacting

Drude-Like Response is now shifted to

 $\omega = q$

Relation to Spectral Peaks

 $\sigma(q,\omega) \Leftrightarrow A(k,\omega) \to A(k_F - q,\omega)$

Simple Correspondence Between Spectral Peaks and Optical Peaks

EEI Interactions

Poles in Green's Function – Peaks in $A(k, \omega)$

0 -0.5 π/m -1.5 -2 -2.5 -1 0 k/k_F

EEI Interactions

Poles in Green's Function – Peaks in A(k,ω)

EPI - Renormalized Spectral Peaks

Electron-Phonon Interaction:

- Broadening for $\omega > \omega_E$
- Holstein sideband vanishes for $q > \omega_E$

All optical peaks gain EPI renormalization factor

Analytic Result

Intraband:

$$\frac{\sigma^L(q,\omega)}{\sigma_0} = \frac{8\mu_0}{\pi} \left(\frac{\omega}{\bar{q}}\right)^2 \frac{1}{\sqrt{\bar{q}^2 - \omega^2}} \frac{1}{1+\lambda}$$

$$1000 - - q/k_{F}=0.0 - 0.1 - 0.5 - 0.9$$

$$\overline{q} = q \,/\, (1 + \lambda)$$

Simple Renormalization Factors Allow for Approximate Result for EPI Interaction

Holstein Side Band Does Not Interfere With EEI Region for Larger q

17/30

Phillip E.C. Ashby et al. Phys. Rev. B 86, 165405 (2012) Benasque 2013

Recap

Interactions on $\sigma(q, \omega)$

- In the presence of scattering, the densitydensity and current-current correlation functions for finite momentum are not simply related
- Shown correspondence between quasiparticle spectral peaks and Intraband piece of finite q conductivity
- All Features scale with Chemical Potential
- EPI adds renormalization, λ, factors

$$\frac{\sigma^L(q,\omega)}{\sigma_0} = \frac{8\mu_0}{\pi} \left(\frac{\omega}{\bar{q}}\right)^2 \frac{1}{\sqrt{\bar{q}^2 - \omega^2}} \frac{1}{1+\omega}$$

18/30

5 10 *a* (10⁵ cm⁻¹)

The Heart of Screening - RPA

$$\mathcal{E}^{-1}(q,\omega) = \frac{1}{1 - V_q \Pi(q,\omega)} = \frac{q}{q - \alpha \Pi(q,\omega)}$$

Scaling with $\boldsymbol{\mu}$

Strain

<u>Non-Interacting</u> Purely Geometric Modification To Bare Bands

 $\bar{k} = A(\gamma)k$ $A(\gamma) = R(\gamma)S(\varepsilon)R(-\gamma)$ $S(\varepsilon) = \begin{pmatrix} c_{\parallel} & 0\\ 0 & c_{\perp} \end{pmatrix}$

Transformation to Maintain Linear Dispersion

 $H = \hbar v_F \boldsymbol{\sigma} \cdot \boldsymbol{k}$

Strain on the Plasmaron Ring

What is the simplest thing you can do?

Not good for interacting system We can do better than this

G₀W-RPA

Geometrically Strain the noninteracting dispersion

 $\overline{\mathbf{q}} = A(\gamma)\mathbf{q}$

 $\Pi(q,\omega) = \left[\det S(\epsilon)\right]^{-1} \Pi^0(\overline{q},\omega)$

Recalculate the G₀W-RPA Self Energies

 $\Sigma = \Sigma^{line} + \Sigma^{Res}$

$$\Sigma_{s}^{RES}(\boldsymbol{k},\omega) = \sum_{s'=\pm 1} \int_{0}^{\infty} \int_{0}^{2\pi} \frac{dq d\theta_{\boldsymbol{q}}}{2\pi} \frac{\alpha}{g} \varepsilon^{-1}(q,\omega-\epsilon_{\boldsymbol{k+q}}^{s'}) F_{ss'}(\beta_{\boldsymbol{\bar{k}}\boldsymbol{\bar{k}'}}) \left[\Theta(\omega-\epsilon_{\boldsymbol{k+q}}^{s'}) - \Theta(-\epsilon_{\boldsymbol{k+q}}^{s'})\right]$$

Renormalizations Depend on Direction in k-space (short vs long axis)

Spectral Function

24/30

δE shift with correlations

δk shift

How does δk in the long axis deviate from the purely geometric straining which one expects from noninteracting strain?

Long Axis – Variation in Coupling

Start with unstrained EEI Result (Bostwick et al. Science 382, 999 2010)

Purely Geometric Strain

Strained G₀W-RPA EEI Enhances This Effect

Width of Plasmaron Ring Has Increased Without Changing Substrate (α)

Simple Picture – Low vs High Frequency

28/30

Recap - Strain

Geometrically Strained Low Frequency

- k_F points don't move due to correlations
- Dirac point at E_0 independent of strain

New Correlations at High Frequencies

- Modified Electron-Plasmon Scattering Peak ('Plasmaron ring')
 - Effectively larger α without changing substrate

Use strain to tune features of plasmons in ARPES or optics.

Be prepared for extra correlations.

Conclusions

Shown correspondence between quasiparticle spectral peaks and Intraband piece of finite q conductivity

- All Features scale with Chemical Potential
- EPI adds renormalization, λ , factors

Application of Strain modifies G₀W-RPA

- Additional non-geometric features
- Possibility to use strain to tune electronplasmon scattering structures.

