
Spatial Dispersion and the Tensor 

Intraband Conductivity of Graphene: 

Importance for Modeling Graphene 

Nanoribbons 
 

Graphene  

Nanophotonics 

2013, March 3 - 8 

Benasque, Spain 

George W. Hanson, University of Wisconsin-Milwaukee, USA 

Giampiero Lovat, Rodolfo Araneo, Paolo Burghignoli, University of Rome 

"Sapienza”, Italy 



Introduction  
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The main focus is propagation properties of 

graphene nanoribbons (GNR). 

We concentrate on the frequency range 1-1000 GHz: 

 Less explored (since a lot of the interesting stuff 

happens from 1-50 THz)  

However, the low GHz range is 

important for possible graphene 

interconnects and/or all-graphene 

circuits. 
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Based on the need to consider very slow modes on GNR, we 

derived analytical expressions for the spatially-dispersive intraband 

conductivity tensor of graphene, valid for any wavevector. 

Derived from the semi-classical Boltzmann  

transport equation under the  

Bhatnagar-Gross-Krook model  

(allowing for number conservation  

– the Mermin correction).  

 

 



There has been a lot of previous work on surface waves on infinite 

graphene sheets.  

An early and important paper is  

S. A. Mikhailov and K. Ziegler, PRL 99, 016803 2007. 

 

Interplay of intra- and interband conductivity governs the sign of 

Im(σ): 

Im(σ)>0: intraband contribution dominates, only TM modes allowed 

Im(σ)<0: interband contribution dominates, only TE modes allowed 

       (e-iωt assumed) 
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Previous work – surface plasmons 
on local graphene  



5 

Previous work – surface plasmons 
on local graphene  

Local conductivity model 
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Previous work – surface plasmon 
propagation on local graphene  

Hanson, J. Appl. Phys., v. 103, pp. 064302 (1-7), 2008.  
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Previous work – excitation 
amplitude of surface plasmons on 

local graphene  

G.W. Hanson, E. Forati, W. Linz, and A.B. Yakovlev, PRB 86, 235440 (1-9), 2012. 

G.W. Hanson, A.B. Yakovlev, and A. Mafi, JAP 110, 114305 (1-8), 2011. 
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Introduction – previous work – 
spatial dispersion  
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Introduction – Previous Work  

Analytical formulas are 

presented for the scalar 

permittivity for T=0, τ-1=0, 

and q real. 
                            



Our previous work on tensor intraband spatial dispersion 

in graphene  

G.W. Hanson, IEEE Trans. Antennas Propagat., v. 56, pp. 747-757, Mar., 2008.  
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Introduction – Previous Work   
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valid for small-q 

only implemented the RTA approximation 
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Need for spatial dispersion – 
very slow modes 
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If |q| << ω/vF, then σRTA(q,ω) ≈ σRTA(ω) and we can assume the 

local response. 

If |q| ≥ ω/vF, then σRTA(q,ω) and we need to include spatial 

dispersion. 

|q|/k0 ≥ c/vF ≈ 300 

 



We found that for surface waves on infinite graphene 

sheets, spatial dispersion seems to be unimportant. 

For graphene nanoribbons, above a few THz spatial 

dispersion may be unimportant (at least for phase 

constant). 

For graphene nanoribbons, below a THz spatial 

dispersion seems to be very important. 
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Formulation 
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Infinite contiguous graphene sheet modeled by surface 

conductivity σ (S) 
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A perturbation approach leads to fe  f
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Non-equilibrium distribution function from Boltzmann’s equation: 
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We have evaluated the integrals numerically, resulting in 

what we call the exact solution (within a Boltzmann model 

assuming tight-binding energy dispersion). 

Assuming linear dispersion throughout the first BZ , 

approximate analytical evaluation of the integrals can be 

performed.  

This replaces our previous RTA power-series solution valid 

for small |q| values. 
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The conductivity tensor has a diagonal form in a polar 

coordinate system.  

Matrix of eigenvectors 

Resulting diagonalized  

conductivity 

This implies that the electric field-surface current relationship is 

invariant under arbitrary rotations of the sheet in that plane. 
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Approximate analytical evaluation of the graphene 

conductivity: the BGK and RTA forms for low-q 

values 
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Quantum Capacitance of a Graphene Sheet 

It is natural to define the graphene distributed impedance as  

 

  

In the low-q approximation, 
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Agrees with the results of 

others for the quantum 

capacitance 

Distributed impedance 



Formulation 

24 

The presence of quantum capacitance is a consequence 

of including spatial dispersion.  

The parameter ξ  is dramatically different in the BGK 

and the RTA models, such that the low-frequency 

impedance is 

zBGK  R  iLk 
q2

iCq

zRTA  R  iLk



Graphene Conductivity 
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In all cases τ=0.5 ps, μ=0 eV, and T=300 K.  

f=10 GHz 
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f=10 GHz 

Graphene Conductivity 
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f=1 THz 

Graphene Conductivity 
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f=1 THz 

Graphene Conductivity 
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f=100 GHz 

Graphene Conductivity 
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f=100 GHz 

Graphene Conductivity 
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f=100 GHz 

Graphene Conductivity 
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Graphene Nanoribbon (GNR) 

GNR modes are found using 

dyadic Green’s functions and 

forming a homogeneous 

integral equation.  

Numerical root search leads to 

the longitudinal eigenvalues. 



33 

Graphene Nanoribbon (GNR) 

Some previous GNR simulation work: 

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F.H.L. 

Koppens, and F. J. García de Abajo, ACS Nano 6, 431-440, 2012. 

A. Y. Nikitin, F. Guinea, F. J. García-Vidal, and L. Martín-Moreno, 

Phys. Rev. B 84, 161407, 2011. 

We found good agreement with previous work in the THz range. 



Graphene Nanoribbon (GNR) 
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w = 100 nm, h = 500 nm,  ε= 3.9 
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w = 100 nm, h = 500 nm,  ε= 3.9 

Graphene Nanoribbon (GNR) 
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Graphene Nanoribbon (GNR) – no 
ground plane 



37 

GNR – no ground plane 
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GNR – no ground plane 
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GNR – no ground plane 
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Measurements??? 



Thank You 

Conclusions 

 

• Exact (within a tight-binding Boltzmann model) 

numerical results for the spatially-dispersive tensor 

conductivity of graphene have been presented. 

• The tensor is given in analytical form for linear 

dispersion throughout the first BZ. 

• For infinite graphene sheets spatial dispersion is not 

very important in many applications, but for GNRs 

spatial dispersion is quite important in some 

frequency ranges. 

 


