Nonlinear electrodynamic phenomena in graphene

Sergey Mikhailov

University of Augsburg, Germany

International Conference “Graphene Nanophotonics”
Benasque, March 6, 2013
Graphene as a nonlinear material

Important graphene properties

- Linear energy dispersion
 \[E_{\pm}(p) = \pm v_F|p| \]
- Two bands (electrons and holes)
- Large Fermi velocity
 \[v_F \sim 10^8 \text{ cm/s} \]
Outline

1. Frequency multiplication and mixing
2. Nonlinear broadening of “linear” resonances
3. Plasmon enhanced harmonics generation
4. Graphene based tunable terahertz emitter
5. Summary and Conclusions
Outline

1. Frequency multiplication and mixing
2. Nonlinear broadening of “linear” resonances
3. Plasmon enhanced harmonics generation
4. Graphene based tunable terahertz emitter
5. Summary and Conclusions
Linear energy dispersion \Rightarrow nonlinear electromagnetic response:

$$\begin{align*}
\dot{p}_x &= -eE \cos \omega t, \quad p_x(t) \sim -(eE/\omega) \sin \omega t \\

v_x &= v_F \frac{p_x}{p} \sim v_F \text{sgn}(\sin \omega t) \\
\sim v_F \frac{4}{\pi} \left\{ \sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + \ldots \right\}
\end{align*}$$

Higher harmonics generation $\omega \Rightarrow m\omega$

Nonlinearity in graphene should be seen at much lower electric fields than in many other materials
Frequency multiplication in graphene

Linear energy dispersion \Rightarrow nonlinear electromagnetic response:

\[
\dot{p}_x = -eE \cos \omega t, \quad p_x(t) \sim -(eE/\omega) \sin \omega t
\]

\[
v_x = v_F \frac{p_x}{p} \sim v_F \text{sgn}(\sin \omega t)
\]

\[
\sim v_F \frac{4}{\pi} \left\{ \sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + \ldots \right\}
\]

Higher harmonics generation $\omega \Rightarrow m\omega$

Nonlinearity in graphene should be seen at much lower electric fields than in many other materials
Frequency multiplication in graphene

Typical nonlinear electric field?

\[v_x = v_F \frac{p_x}{\sqrt{p_x^2 + p_y^2}}, \quad -p_F \lesssim p_y \lesssim p_F, \quad p_F = \hbar \sqrt{\pi n_s} \]

\[\Rightarrow \frac{v_x}{v_F} = \frac{p_x(t)}{|p_y|} \left(1 - \frac{p_x^2(t)}{2|p_y^2|} \right) \sim \frac{p_x(t)}{p_F} \left(1 - \frac{p_x^2(t)}{2|p_F^2|} \right) \]

Dimensionless electric field parameter in graphene

\[\mathcal{E}_{gr} \sim \frac{eE}{p_F|\omega + i\gamma|} \]

if \(\omega \gtrsim \gamma, \ f \simeq 1 \text{ THz} \) and \(n_s \sim 10^{11} \text{ cm}^{-2} \), then \(\mathcal{E}_{gr} \sim 1 \) if

\[E \sim 2 \times 10^3 \text{ V/cm} \]
Conventional plasma vs. Graphene

Graphene:

\[\mathcal{E}_{gr} \simeq \frac{eE}{p_F |\omega + i\gamma|} \quad E_{\text{typical}} \simeq 2 \times 10^3 \text{ V/cm} \]

Conventional 3D plasma:

\[\mathcal{E}_{par} \simeq \frac{eE}{mc |\omega + i\gamma|} \quad E_{\text{typical}} \simeq 10^8 \text{ V/cm} \]

Five orders of magnitude difference!

2nd and 3rd order effects \(\propto \mathcal{E}^2 \) and \(\mathcal{E}^3 \) \(\Rightarrow \)

Ten – fifteen orders of magnitude difference!
Frequency multiplication

External field $E(t) = E_0 \cos \omega t \Rightarrow$

- Low frequencies $\hbar \omega \ll 2|\mu|$, quasiclassical theory
 \[j_{3\omega}(t) = \frac{1}{32} \frac{n_s e^2 v_F^2}{\omega |\mu|} E_0 \left(\frac{eE_0 v_F}{\omega \times |\mu|} \right)^2 \sin 3\omega t \]

- High frequencies $\hbar \omega \gg 2|\mu|$, quantum theory
 \[j_{3\omega}(t) \simeq \frac{e^2}{4\hbar} E_0 \left(\frac{eE_0 v_F}{\omega \times \hbar \omega} \right)^2 \cos(3\omega t) \]

- Harmonics amplitudes get smaller at higher frequencies
- But: interband transitions \Rightarrow resonances at
 \[\hbar \omega = 2|\mu|, \quad \hbar \omega = |\mu|, \quad \hbar \omega = 2|\mu|/3 \]
Frequency multiplication and mixing
Nonlinear broadening of “linear” resonances
Plasmon enhanced harmonics generation
Graphene

Frequency multiplication: Microwave experiment

Dragoman et al, APL’10

Output power vs dc bias for the second to fifth harmonics of an excitation frequency (c) 3 GHz and (d) 5 GHz (coplanar waveguide over graphene monolayer). Up to 7th harmonics have been observed (frequency up to 40 GHz)
Frequency mixing

External electric field: \(E_1 \cos \omega_1 t + E_2 \cos \omega_2 t \)

3rd order response at \(3\omega_1, 3\omega_2, 2\omega_1 \pm \omega_2, 2\omega_2 \pm \omega_1 \)

- Low frequencies \(\hbar \omega_{1,2} \ll 2|\mu| \), quasiclassical theory
 \[
 j_{(2\omega_1 \pm \omega_2)}(t) = -\frac{3}{32} \frac{n_s e^2 v_F^2}{|\mu| \omega_2} E_2 \left(\frac{e v_F E_1}{\omega_1 |\mu|} \right)^2 \sin[(\omega_2 \pm 2\omega_1) t]
 \]

- High frequencies \(\hbar \omega_{1,2} \gg |\mu| \), quantum theory
 \[
 j_{(2\omega_1 - \omega_2)}(t) = -\frac{3}{8} \frac{e^2}{4 \hbar} E_2 \left(\frac{e v_F E_1}{\omega_1 \hbar \omega_2} \right)^2 F(\omega_1, \omega_2) \cos[(2\omega_1 - \omega_2) t]
 \]

- Intensity dependence \(I_{(2\omega_1 - \omega_2)} \propto I_{\omega_1}^2 I_{\omega_2} \)
- Polarization dependence \(I_\parallel / I_\perp = 9 \)
Frequency multiplication and mixing
Nonlinear broadening of “linear” resonances
Plasmon enhanced harmonics generation
Graphene

Experiment: Optical frequency mixing

Hendry et al, PRL’10

(a) Sample
Objective
Dichroic filter
Scanning mirrors

(b) \(\omega_1 \) \(\omega_2 \) \(\omega_e \)

(c) Energy vs. Momentum
\(\omega_1 \) \(\omega_2 \) \(\omega_e \)

Emission spectrum:
- \(\lambda_1 = 977 \text{ nm} \)
- \(\lambda_2 = 1168 \text{ nm} \)
- \(\lambda_3 = 940 \text{ nm} \)
- \(\lambda_4 = 1224 \text{ nm} \)

Emission wavelength (nm)
Emission intensity (au)
Experiment: Optical frequency mixing

Nonlinear susceptibility $\chi^{(3)}_{\text{graphene}}$:

$$\chi^{(3)}_{\text{gr}} \approx 10^{-7} \text{ esu}$$

- eight orders larger than in insulators
- ~ 10 times larger than in gold
- about four orders larger than in InSb
Experiment: Microwave frequency mixing

Local oscillator

\[f_{LO} = 36 \text{ GHz} \]

\[f_{RF} \simeq 39.3 \text{ GHz} \]
Outline

1. Frequency multiplication and mixing
2. Nonlinear broadening of “linear” resonances
3. Plasmon enhanced harmonics generation
4. Graphene based tunable terahertz emitter
5. Summary and Conclusions
Nonlinear broadening of “linear” resonances

System of particles in a weak external field F:

$$\frac{\partial f_p(r, t)}{\partial t} + v_p \frac{\partial f_p(r, t)}{\partial r} + F(r, t) \frac{\partial f_p(r, t)}{\partial p} = 0$$

- Conventional (perturbative) way to solve the problem:

 $$f_p(r, t) = f_p^{(0)} + f_p^{(1)}(r, t), \quad f^{(1)} \propto F(r, t)$$

 $$\Rightarrow \text{if } F \propto e^{i\omega t} \text{ then } f^{(1)} \propto e^{i\omega t}$$

- Nonperturbative way gives different result!
Nonlinear broadening of “linear” resonances

System of particles in a weak external field F:

$$\frac{\partial f_p(r, t)}{\partial t} + v_p \frac{\partial f_p(r, t)}{\partial r} + F(r, t) \frac{\partial f_p(r, t)}{\partial p} = 0$$

- Conventional (perturbative) way to solve the problem:

$$f_p(r, t) = f_p^{(0)} + f_p^{(1)}(r, t), \quad f^{(1)} \propto F(r, t)$$

$$\Rightarrow \text{if } F \propto e^{i\omega t} \text{ then } f^{(1)} \propto e^{i\omega t}$$

- Nonperturbative way gives different result!
Nonperturbative way is equivalent to the solution of the system of equations

\[\dot{r} = v = v_F \frac{p}{m}, \quad \dot{p} = -eE(t) - \frac{e}{c} v \times B \]

⇒ Nonlinear system, results depend on initial conditions
Example 2: Plasma oscillations

Overview: plasma waves in low-dimensional electron systems in semiconductors

Theory

- F. Stern (PRL’67 first paper on the theory of 2D plasmons)
- Group of J. Quinn (PRL, PRB, 1972-..., magnetoplasmons and more, plasmons in superlattices)
- A. V. Chaplik (Sov. Phys. JETP, about 1970-1985, plasmons in MOSFETs)
- Group of E. Zaremba (PRB, plasmons in dots, rings, etc)

Books and book chapters:

Example 2: Plasma oscillations

Experiment

- Group of D. Heitmann (PRB, PRL, a lot of works on bulk and edge plasmons and magnetoplasmons in wires, dots, antidots, etc; FIR transmission technique)
- Group of J. Kotthaus (PRB, PRL, a lot of works on plasmons in rings, elliptic quantum dots (Claus Dahl, also theory), etc; FIR and microwave transmission technique)
- Group of K. von Klitzing (PRB, PRL, also many works, microwaves, FIR, also photoresistance response)
- I. Kukushkin (PRL, PRB, JETP Lett. etc, many works on plasmons in microwave frequency range; retardation effects, proposal of edge-magnetoplasmon based frequency sensitive detector of microwave radiation - patent - company terasense.com - produces microwave cameras operating at room T at GHz-THz frequencies)
Example 2: Plasma oscillations

Conventional (perturbative) way (RPA, Wunsch’06; Hwang’07):

\[\omega_p^2(q) = \frac{2\pi n_s e^2}{m^*} q, \quad m^* = \frac{\rho_F}{v_F}, \quad \text{no damping} \]
Example 2: Plasma oscillations

\[m \frac{d^2(\delta x)}{dt^2} = -eE_x \sim -e \frac{en_s \delta x}{L\kappa} \Rightarrow \]

\[\omega_{p2}(q) = \frac{2\pi n_s e^2}{m\kappa} q \]
Example 2: Plasma oscillations

Plasma waves as oscillations of particles in a parabolic potential $U(x) = Kx^2/2$, $K \propto$ background density

- Parabolic dispersion:

$$\dot{r} = \frac{p}{m}, \quad \dot{p} = -Kxe_x$$

$$\Rightarrow \ddot{r} = -\frac{K}{m} r$$

- Linear dispersion:

$$\dot{r} = v_F \frac{p}{p}, \quad \dot{p} = -Kxe_x$$

$$\Rightarrow$$ Oscillation frequency depends on initial conditions
Example 2: Plasma oscillations

⇒ Nonperturbative method gives a finite linewidth at

$$T = 0, \; c = \infty \; \text{and} \; \gamma = 0$$

Experiment: **Plasmon line asymmetric**, plasmon frequency $\simeq 3$ THz, linewidth $\simeq 4$ THz
Example 2: Plasma oscillations

The difference is:

\[\frac{\partial f}{\partial t} + \frac{p}{m} \frac{\partial f}{\partial r} + F \frac{\partial f}{\partial p} = 0 \]

\[\frac{\partial f}{\partial t} + v_F p \frac{\partial f}{\partial r} + F \frac{\partial f}{\partial p} = 0 \]

いますが非線形的成分 \(v_F p/p \) をグラフェンの動的方程式に含まれる。

逆応答問題は、\(F \to 0 \) について非perturbatively 解決しなければならない。
Example 2: Plasma oscillations

The difference is:

\[\frac{\partial f}{\partial t} + \frac{p}{m} \frac{\partial f}{\partial r} + F \frac{\partial f}{\partial p} = 0 \]

\[\frac{\partial f}{\partial t} + \nu_F \frac{p}{p} \frac{\partial f}{\partial r} + F \frac{\partial f}{\partial p} = 0 \]

🔹 Nonanlitical term $\nu_F p/p$ in the kinetic equation for graphene!

🔹 The response problem should be solved non-perturbatively even at $F \to 0$
Outline

1. Frequency multiplication and mixing
2. Nonlinear broadening of “linear” resonances
3. Plasmon enhanced harmonics generation
4. Graphene based tunable terahertz emitter
5. Summary and Conclusions
Nonlinearity and plasma resonance

- Normal incidence of radiation, uniform electric field, $q = 0 \Rightarrow$ only 3rd (5th,...) order effects can be observed
- 2D layer with grating or array of stripes, $q \neq 0$
 \Rightarrow 2nd order effects can be observed too
- In addition, plasma resonances can be excited
1st and 2nd order polarizability

External field $\phi(r, t) = \phi_{q\omega} e^{i(q \cdot r - \omega t)} + c.c.$

\Rightarrow $\rho(r, t) = \rho_{q\omega} e^{i(q \cdot r - \omega t)} + \rho_{2q,2\omega} e^{2i(q \cdot r - \omega t)} + c.c.$

$\rho_{q\omega} = \alpha^{(1)}_{q\omega; q\omega} \phi_{q\omega}$, $\rho_{2q,2\omega} = \alpha^{(2)}_{2q,2\omega; q\omega,q\omega} \phi_{q\omega} \phi_{q\omega}$
Polarizability: Semiconductors vs Graphene

• Conventional 2D electron system (parabolic spectrum):

\[\alpha_{q\omega; q\omega}^{(1)} \approx \frac{n_s e^2 q^2}{m \omega^2} \quad \alpha_{2q2\omega; q\omega, q\omega}^{(2)} \approx -\frac{3n_s e^3 q^4}{2m^2 \omega^4} \]

• Graphene (linear spectrum):

\[\alpha_{q\omega; q\omega}^{(1)} = \frac{e^2 g_s g_v q^2 T}{2\pi \hbar^2 \omega^2} \ln \left(2 \cosh \frac{\mu}{2T} \right) \]

\[\alpha_{2q2\omega; q\omega, q\omega}^{(2)} = -\frac{3e^3 g_s g_v q^4 v_F^2}{32\pi \hbar^2 \omega^4} \tanh \frac{\mu}{2T} \]
Self-consistent screening and nonlinear response

- First order

\[\phi_{q\omega}^{tot} = \frac{\phi_{q\omega}^{ext}}{\epsilon(q, \omega)}, \quad \epsilon(q, \omega) = 1 - \frac{2\pi}{q} \alpha^{(1)}_{q\omega; q\omega} \]

- Second order

\[\phi_{2q2\omega}^{tot} = \frac{\pi}{q} \frac{\alpha^{(2)}_{2q2\omega; q\omega, q\omega}}{\epsilon(2q, 2\omega) [\epsilon(q, \omega)]^2} \phi_{q\omega}^{ext} \phi_{q\omega}^{ext} \]
Plasmon enhancement of 2nd harmonic

huge resonance at $\omega \approx \omega_p(q)$, weak at $\omega \approx \omega_p(q)/\sqrt{2}$

$$\frac{\alpha^{(2)}_{\text{graphene}}}{\alpha^{(2)}_{\text{semicond}}} = \frac{(v_F^2)_{\text{graphene}}}{2(v_F^2)_{\text{semicond}}} \approx 10 - 30$$

$$\frac{I_{\text{graphene}}^{\text{tot}}}{I_{\text{GaAs}}^{\text{tot}}} \approx \left(\frac{\alpha^{(2)}_{\text{graphene}}}{\alpha^{(2)}_{\text{GaAs}}} \right)^2 \approx 100 - 900.$$
Outline

1. Frequency multiplication and mixing
2. Nonlinear broadening of “linear” resonances
3. Plasmon enhanced harmonics generation
4. Graphene based tunable terahertz emitter
5. Summary and Conclusions
Graphene based terahertz emitter

- Fermi velocity in graphene $v_F = 10^8$ cm/s
- If to force electrons to move with the drift velocity $v_{dr} \approx v_F = 10^8$ cm/s in a periodic potential with the period $a \approx 1 - 0.1 \, \mu m$ they should emit electromagnetic waves with the frequency

$$f = \frac{v_{dr}}{a} \approx 1 - 10 \, \text{THz}$$

- \Rightarrow solid-state microscopic tunable free electron laser!
Graphene free electron laser
Graphene free electron laser: Estimates

- Estimated frequency: $1 - 30$ THz (including harmonics)
- Room temperature operation
- Radiation power ~ 0.5 W/cm2
- Efficiency $\sim 1\%$
Graphene free electron laser: Estimates

Distance graphene – grating can be only a few monolayers
- electrons move in a step-like potential (non-sinusoidal)
- higher harmonics

\[f_1 \approx 0.6 - 3 \text{ THz for } a_x \approx 1 - 0.2 \mu\text{m} \]
Graphene based THz emitter

- voltage-tunable
- broad frequency range at THz
- operating around room temperature
- high power
- high efficiency
- almost transparent
- bendable (power concentration)
Outline

1. Frequency multiplication and mixing
2. Nonlinear broadening of “linear” resonances
3. Plasmon enhanced harmonics generation
4. Graphene based tunable terahertz emitter
5. Summary and Conclusions
Summary and Conclusions

- Higher harmonics generation
- Frequency mixing effects
- Nonlinear broadening of conventional resonances (cyclotron, plasma)
- Plasmon enhanced second harmonic
- Tunable THz emitter

Graphene:
- A lot of interesting nonlinear physics
- A lot of possible electronics and optoelectronic applications
References

- Frequency multiplication

- Frequency mixing
 - Hendry et al, Phas Rev Lett 105, 097401 (2010)
 - SM, in Physics and Applications of Graphene - Theory, Ch. 25 (InTech, Rijeka, Croatia, 2011)

- Nonlinear broadening of resonances

- Plasmon enhanced harmonics generation
 - SM, Phys Rev B 84, 045432 (2011)

- Graphene based terahertz emitter
 - SM, arXiv 1203.3983; Phys Rev B (2013), accepted
Thanks

Support:
- Deutsche Forschungsgemeinschaft
- European Community’s 7th Framework Programme, Grant No. 265114

THANK YOU FOR YOUR ATTENTION
Frequency multiplication

Frequency mixing

Nonlinear broadening of resonances

Plasmon enhanced harmonics generation
- SM, Phys Rev B 84, 045432 (2011)

Graphene based terahertz emitter
- SM, arXiv 1203.3983; Phys Rev B (2013), accepted