OPTICAL SPECTROSCOPY OF DEFECTS AND DOPANTS IN NANOCARBON MATERIALS

Lukas Novotny, Ryan Beams, Hayk Harutyunyan, Gustavo Cancado, Neil Anderson, Achim Hartschuh Institute of Optics, University of Rochester, Rochester, NY, 14627.

MOTIVATION

Defects and dopants provide an opportunity to engineer the electronic and optical properties in carbon nanomaterials, similar to semiconductor devices.

OBJECTIVE

Control and understand the influence of defects and dopants on the physical properties of carbon nanotubes and graphene.

SPECTROSCOPIC IMAGING

S. Stranick (NIST)

OPTICAL ANTENNAS

WHY NEAR-FIELD SPECTROSCOPY ?

NEAR-FIELD RAMAN SCATTERING

3D CONFINEMENT OF SIGNAL

SERPENTINE NANOTUBES (CVD grown)

E. Joselevich (Weizmann Inst.)

NEAR-FIELD RAMAN IMAGING OF SERPENTINE NANOTUBES

THEORY OF NEAR-FIELD RAMAN SCATTERING IN 1D SYSTEMS

$$\mathbf{p}(\mathbf{r}',\omega_s) \propto \overleftarrow{\alpha}^R(\mathbf{r}',\omega_s;\omega) \mathbf{E}(\mathbf{r}',\omega) \propto \overleftarrow{\mathbf{G}^{\mathrm{o}}(\mathbf{r}',\mathbf{r};\omega)} \overleftarrow{\alpha}_{\mathrm{tip}}(\omega) \mathbf{E}_{\mathrm{o}}(\mathbf{r},\omega)$$

$$\mathbf{E}(\mathbf{r}_{\mathrm{o}},\omega_s) \propto \int_{-\infty}^{+\infty} dz' \, \overleftarrow{\alpha}_{\mathrm{tip}}(\omega_s) \, \overleftarrow{\mathbf{G}^{\mathrm{o}}(\mathbf{r},z';\omega_s)} \, \mathbf{p}(z',\omega_s)$$

L. G. Cançado et al., PRL 103, 186101 (2009).

ENHANCEMENT OF RAMAN MODES IN 1D SYSTEMS

PRL 103, 186101 (2009)

ENHANCEMENT OF RAMAN MODES IN 1D SYSTEMS

PRL 103, 186101 (2009)

Maximiano et al., *PRB* 85, 235434 (2012)

Nano Lett. 7, 577 (2007)

Nano Lett. 7, 577 (2007)

STRUCTURAL DEFECTS (arc-discharge and HiPco tubes)

Nano Lett. 6, 744 (2006) JACS 127, 2533 (2005)

BORON-DOPED NANOTUBES

with A. M. Rao, Clemson University

LOCAL STRAIN

Young's modulus ~1TPa Displacement due to kink ~40nm } Strain ~1.6%

 σ_{xx} (MPa) = [200 ... 800] Δv_{G} (cm⁻¹)

VARIATIONS IN PL SPECTRA

LOCALIZATION OF DEFECTS

RAMAN D-BAND

Due to momentum conservation, the TO phonons giving rise to the D-band only become Raman active if the electrons or holes involved in the scattering process undergo elastic scattering by a lattice defect.

arXiv:0802.3709 (2008)

Nano Lett. 11, 1177 (2011)

Nano Lett. 11, 1177 (2011)

DEFOCUSING TECHNIQUE

 $l_{\rm D} \,({\rm nm}) = 3 + 9/T^{1/2}$

Nano Lett. 11, 1177 (2011)

λ₁=977 nm λ₂=1168 nm

840

Coherent Nonlinear Optical Response of Graphene

E. Hendry,* P.J. Hale, J. Moger, and A. K. Savchenko School of Physics, University of Exeter, EX4 4QL, United Kingdom

S. A. Mikhailov

Institute of Physics, University of Augsburg, D-86135 Augsburg, Germany (Received 19 May 2010; published 26 August 2010)

NONLINEAR FOUR-WAVE MIXING

Degenerate 4WM :

 $\mathbf{P}^{(3)}(\omega) = \varepsilon_0 \,\chi^{(3)}(\omega;\omega,\omega,-\omega) \,\mathbf{E}_1 \exp(i\mathbf{k}_1\mathbf{r}) \,\mathbf{E}_2 \exp(i\mathbf{k}_2\mathbf{r}) \,\mathbf{E}_3^* \exp(-i\mathbf{k}_3\mathbf{r})$

Choose $\mathbf{k}_1 + \mathbf{k}_2 = 0$:

$$\mathbf{E}_4 = \begin{cases} \mathbf{E}_0^{(1)} \exp\left(-ik_1 \sin \theta_3 x + ik_1 \cos \theta_3 z\right) & z > 0 & \text{Negative refraction} \\ \mathbf{E}_0^{(2)} \exp\left(-ik_1 \sin \theta_3 x - ik_1 \cos \theta_3 z\right) & z < 0 & \text{Phase conjugation} \end{cases}$$

NEGATIVE REFRACTION WITH GRAPHENE

arXiv: 1210.4563 (2012)

PHOTOEMISSION FROM GRAPHENE

Ryan Beams (Poster #13)

CONCLUSIONS

NEAR-FIELD SPECTROSCOPY:

1) REVEALS PHONON (EXCITON) LOCALIZATION

2) OPTICAL MEASUREMENT OF ELECTRON COHERENCE LENGTH

3) NEGATIVE REFRACTION

COLLABORATORS:

A. Jorio, E. Joselevich, M. Her, T. Krauss, B. Deutsch, B. McIntyre, M. Dresselhaus, A. Noy

