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Lifshitz spacetimes:
• emerged in applications of the AdS/CFT duality to
non-relativistic, specifically, condensed matter systems.
• thought of as gravity duals of theories w/ nontrivial scaling
properties.

Lifshitz black holes:
• BH solutions to some gravity (+ matter) theory that are
asymptotically Lifshitz.
• needed for describing “finite temperature aspects” of these
non-relativistic systems.
• nice review on all related story on AdS/CMT by S.A. Hartnoll,
Class. Quant. Grav. 26, 224002 (2009) [arXiv:0903.3246 [hep-th]].

Observation: Few exact analytic Lifshitz BHs exist, and all known
ones are static.



Advertisement: the first work to present stationary D-dimensional
exact analytic Lifshitz spacetimes and (similarly) black “objects”.

A closer look at static Lifshitz spacetimes:
• a typical feature in condensed matter systems is the “dynamical
scaling” property:

t 7→ λz t , ~x 7→ λ~x ,where z 6= 1 is called the “dynamical exponent”,

instead of the more familiar conformal scalings:

t 7→ λt , ~x 7→ λ~x .

• plus the following usual additional symmetries:
spatial translations + temporal translations + spatial rotations +
parity (P) symmetry + time reversal (T) symmetry



• distinguish one spatial coordinate, call it r ( 0 ≤ r <∞ ), and
let the dynamical scaling transformations act as

t 7→ λz t , ~x 7→ λ~x , r 7→ r/λ ,

where z 6= 1 again and ~x denotes a (D − 2)-dimensional vector.
• Then one ends up with the D-dimensional static Lifshitz
spacetime suitable for AdS/CFT games:

ds2 = − r2z

`2z
dt2 +

`2

r2
dr2 +

r2

`2

(D−2∑
i=1

dx2i

)
, (1)

• When z = 1, usual AdSD metric with SO(D − 1, 2) symmetry.
• the length scale set by ` > 0.



Stationary Lifshitz spacetimes:
• Replace the two separate “P symmetry” + “T symmetry”
requirements with the weaker “PT symmetry” invariance, i.e. ask
for the following symmetries:
dynamical scaling transformations + spatial translations +
temporal translations + spatial rotations + PT symmetry
• Then one ends up with the D-dimensional stationary Lifshitz
spacetime:

ds2 = − r2z
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(2)
• For later convenience, xD−2 ≡ φ distinguished from the
remaining xi (1 ≤ i ≤ D − 3).
• the static Lifshitz spacetime is obtained when ω, the
dimensionless “rotation parameter”, is set to 0.



R2-corrected gravity theory:
• The action:

I =

∫
dDx
√
−g
(
R + 2Λ + αR2

)
, (3)

where Λ is the cosmological constant and α is a coupling constant .

The first result:
Stationary Lifshitz spacetime (2) solves the field equations
following from the action (3) for generic values of the parameters z
and ω in any D ≥ 3, provided that α and Λ are tuned as

α =
1

8Λ
, (4)

Λ =
2D2 + 3(z − 1)2 + 2D(2z − 3)

8`2
+

(z − 1)2

8`2(1 + ω2)
. (5)



The main result:
Provided that α and Λ are precisely as in (4) and (5), the metric

ds2 = − r2z
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, where (6)

h(r) ≡ c + k
`2(1+z)

r2(1+z)
+ M− `p−

rp−
+ M+ `p+

rp+
, with (7)

c ≡ 4 `2 Λ

2z2 + (D − 2)(2z + D − 1)
, (8)

k ≡ 2ω2

D2 − 7D + 14− 2z(D − 3)
, and (9)

p± ≡ 1

2

(
3z + 2(D − 2)±

√
z2 + 4(D − 2)(z − 1)

)
, (10)

solves the field equations of the action (3) for any D ≥ 3.



Remarks:
• Note that the coefficients c and k are completely determined by
z and ω, whereas the integration constants M± are left as free
parameters.
• (1) and the static version of the metric (6) [ i.e. the one with
ω = 0 for which c = 1, k = 0, the relations (4) and (5) for α and
Λ, and the metric function h(r) in (7) are simplified accordingly]
were first presented by E. Ayon-Beato, et al. in JHEP 1004, 030
(2010) [arXiv:1001.2361 [hep-th]].
• However with ω on, (2) and the stationary metric (6) (with the
accompanying equations (4), (5) and (7)-(10), respectively) are
clearly more general.
• In the conformal limit z = 1 with D = 3, the metric (6) becomes
identical to the BTZ metric when one sets M+ = 0,
M− = −M < 0 and ω = −j/2.



• The curvature scalars of the metrics (2) and (6) are both given
by R = −4Λ precisely. This allows for the casting of the action (3)
into the form

I =
1

8Λ

∫
dDx
√
−g (R + 4Λ)2 ,

and this theory cannot be mapped into a scalar-tensor theory by a
conformal transformation of the metric.
• To have h(r) real, one needs

z < z− ≡ 4− 2D − 2
√

(D − 1)(D − 2) < 0 or

z > z+ ≡ 4− 2D + 2
√

(D − 1)(D − 2) > 0 .

For the metric (6) to describe a black hole, a careful analysis
further chooses the branch z > z+ > 0.



• One can construct analogous solution(s) of the form (6) for the
critical value(s) of the dynamical exponent z = z± with logarithmic
h(r) function(s).
• In fact the region z ∈ (z−, z+) is not excluded either! However,
let me skip the details of it here!
• A careful consideration shows that both the energy E and the
entropy S , as well as the angular momentum J, vanish for this
class of solutions: E = S = J = 0. Perhaps this is not so surprising
after all, since the action I = 0 at the first place for these
solutions! (Recall my previous remark following R = −4Λ.)



Conclusions and open problems:
• As put forward by E. Ayon-Beato, et al., one may think of these
solutions (or their Euclidean counterparts) as some kind of
“gravitational instantons”.
• Stability of these solutions has not been analyzed yet.
• The implications of these solutions on the CMT side has not
been studied yet.


