Stationary Lifshitz black holes of R^{2}-corrected gravity theory

Ozgür Sarıoğlu

Department of Physics, Faculty of Arts and Sciences, Middle East Technical University, 06800, Ankara, Turkey

September 10, 2013

Phys. Rev. D 84, 127501 (2011); arXiv:1109.4721 [hep-th]

Lifshitz spacetimes:

- emerged in applications of the AdS/CFT duality to non-relativistic, specifically, condensed matter systems.
- thought of as gravity duals of theories $\mathrm{w} /$ nontrivial scaling properties.

Lifshitz black holes:

- BH solutions to some gravity (+ matter) theory that are asymptotically Lifshitz.
- needed for describing "finite temperature aspects" of these non-relativistic systems.
- nice review on all related story on AdS/CMT by S.A. Hartnoll, Class. Quant. Grav. 26, 224002 (2009) [arXiv:0903.3246 [hep-th]].

Observation: Few exact analytic Lifshitz BHs exist, and all known ones are static.

Advertisement: the first work to present stationary D-dimensional exact analytic Lifshitz spacetimes and (similarly) black "objects".

A closer look at static Lifshitz spacetimes:

- a typical feature in condensed matter systems is the "dynamical scaling" property:
$t \mapsto \lambda^{z} t, \quad \vec{x} \mapsto \lambda \vec{x}$, where $z \neq 1$ is called the "dynamical exponent", instead of the more familiar conformal scalings:

$$
t \mapsto \lambda t, \quad \vec{x} \mapsto \lambda \vec{x} .
$$

- plus the following usual additional symmetries: spatial translations + temporal translations + spatial rotations + parity (P) symmetry + time reversal (T) symmetry
- distinguish one spatial coordinate, call it $r(0 \leq r<\infty)$, and let the dynamical scaling transformations act as

$$
t \mapsto \lambda^{z} t, \quad \vec{x} \mapsto \lambda \vec{x}, \quad r \mapsto r / \lambda,
$$

where $z \neq 1$ again and \vec{x} denotes a $(D-2)$-dimensional vector.

- Then one ends up with the D-dimensional static Lifshitz spacetime suitable for AdS/CFT games:

$$
\begin{equation*}
d s^{2}=-\frac{r^{2 z}}{\ell^{2 z}} d t^{2}+\frac{\ell^{2}}{r^{2}} d r^{2}+\frac{r^{2}}{\ell^{2}}\left(\sum_{i=1}^{D-2} d x_{i}^{2}\right) \tag{1}
\end{equation*}
$$

- When $z=1$, usual AdS_{D} metric with $S O(D-1,2)$ symmetry.
- the length scale set by $\ell>0$.

Stationary Lifshitz spacetimes:

- Replace the two separate "P symmetry" + "T symmetry" requirements with the weaker "PT symmetry" invariance, i.e. ask for the following symmetries:
dynamical scaling transformations + spatial translations + temporal translations + spatial rotations + PT symmetry
- Then one ends up with the D-dimensional stationary Lifshitz spacetime:

$$
\begin{equation*}
d s^{2}=-\frac{r^{2 z}}{\ell^{2 z}} d t^{2}+2 \omega \frac{r^{z+1}}{\ell^{z+1}} d t d \phi+\frac{r^{2}}{\ell^{2}} d \phi^{2}+\frac{\ell^{2}}{r^{2}} d r^{2}+\frac{r^{2}}{\ell^{2}}\left(\sum_{i=1}^{D-3} d x_{i}^{2}\right) \tag{2}
\end{equation*}
$$

- For later convenience, $x_{D-2} \equiv \phi$ distinguished from the remaining $x_{i}(1 \leq i \leq D-3)$.
- the static Lifshitz spacetime is obtained when ω, the dimensionless "rotation parameter", is set to 0 .
R^{2}-corrected gravity theory:
- The action:

$$
\begin{equation*}
I=\int d^{D} \times \sqrt{-g}\left(R+2 \Lambda+\alpha R^{2}\right) \tag{3}
\end{equation*}
$$

where Λ is the cosmological constant and α is a coupling constant .

The first result:
Stationary Lifshitz spacetime (2) solves the field equations following from the action (3) for generic values of the parameters z and ω in any $D \geq 3$, provided that α and Λ are tuned as

$$
\begin{align*}
& \alpha=\frac{1}{8 \Lambda} \tag{4}\\
& \Lambda=\frac{2 D^{2}+3(z-1)^{2}+2 D(2 z-3)}{8 \ell^{2}}+\frac{(z-1)^{2}}{8 \ell^{2}\left(1+\omega^{2}\right)} . \tag{5}
\end{align*}
$$

The main result:
Provided that α and Λ are precisely as in (4) and (5), the metric

$$
\begin{align*}
d s^{2}= & -\frac{r^{2 z}}{\ell^{2 z}} h(r) d t^{2}+\frac{r^{2}}{\ell^{2}}\left(d \phi+\omega \frac{\ell^{2}}{r^{2}} d t\right)^{2} \\
& +\frac{\ell^{2}}{r^{2}} \frac{d r^{2}}{h(r)}+\frac{r^{2}}{\ell^{2}}\left(\sum_{i=1}^{D-3} d x_{i}^{2}\right), \text { where } \tag{6}\\
h(r) \equiv & c+k \frac{\ell^{2(1+z)}}{r^{2(1+z)}}+M^{-} \frac{\ell^{p_{-}}}{r^{p_{-}}}+M^{+} \frac{\ell^{p_{+}}}{r^{p_{+}}}, \text {with } \tag{7}\\
c \equiv & \frac{4 \ell^{2} \Lambda}{2 z^{2}+(D-2)(2 z+D-1)}, \tag{8}\\
k \equiv & \frac{2 \omega^{2}}{D^{2}-7 D+14-2 z(D-3)}, \text { and } \tag{9}\\
p_{ \pm} \equiv & \frac{1}{2}\left(3 z+2(D-2) \pm \sqrt{z^{2}+4(D-2)(z-1)}\right) \tag{10}
\end{align*}
$$

solves the field equations of the action (3) for any $D \geq 3$.

Remarks:

- Note that the coefficients c and k are completely determined by z and ω, whereas the integration constants $M^{ \pm}$are left as free parameters.
- (1) and the static version of the metric (6) [i.e. the one with $\omega=0$ for which $c=1, k=0$, the relations (4) and (5) for α and Λ, and the metric function $h(r)$ in (7) are simplified accordingly] were first presented by E. Ayon-Beato, et al. in JHEP 1004, 030 (2010) [arXiv:1001.2361 [hep-th]].
- However with ω on, (2) and the stationary metric (6) (with the accompanying equations (4), (5) and (7)-(10), respectively) are clearly more general.
- In the conformal limit $z=1$ with $D=3$, the metric (6) becomes identical to the BTZ metric when one sets $M^{+}=0$, $M^{-}=-M<0$ and $\omega=-j / 2$.
- The curvature scalars of the metrics (2) and (6) are both given by $R=-4 \Lambda$ precisely. This allows for the casting of the action (3) into the form

$$
I=\frac{1}{8 \Lambda} \int d^{D} x \sqrt{-g}(R+4 \Lambda)^{2},
$$

and this theory cannot be mapped into a scalar-tensor theory by a conformal transformation of the metric.

- To have $h(r)$ real, one needs

$$
\begin{aligned}
& z<z_{-} \equiv 4-2 D-2 \sqrt{(D-1)(D-2)}<0 \quad \text { or } \\
& z>z_{+} \equiv 4-2 D+2 \sqrt{(D-1)(D-2)}>0
\end{aligned}
$$

For the metric (6) to describe a black hole, a careful analysis further chooses the branch $z>z_{+}>0$.

- One can construct analogous solution(s) of the form (6) for the critical value(s) of the dynamical exponent $z=z_{ \pm}$with logarithmic $h(r)$ function(s).
- In fact the region $z \in\left(z_{-}, z_{+}\right)$is not excluded either! However, let me skip the details of it here!
- A careful consideration shows that both the energy E and the entropy S, as well as the angular momentum J, vanish for this class of solutions: $E=S=J=0$. Perhaps this is not so surprising after all, since the action $I=0$ at the first place for these solutions! (Recall my previous remark following $R=-4 \Lambda$.)

Conclusions and open problems:

- As put forward by E. Ayon-Beato, et al., one may think of these solutions (or their Euclidean counterparts) as some kind of "gravitational instantons".
- Stability of these solutions has not been analyzed yet.
- The implications of these solutions on the CMT side has not been studied yet.

