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• Binaries of compact objects (black holes and/or neutron stars) are one of the most promising sources of GW 
that we hope to detect with the advanced versions of LIGO/Virgo and with a future space-based detector.

• Successfully extracting the very weak signal from the noise and estimating the parameters of the source with 
good precision can be achieved using matched filtering techniques provided that we have a very accurate 
modelling of the waveform.

• The post-Netwtonian approximation scheme enables to compute such accurate waveforms as an expansion 
in v/c for the inspiral phase.  For non-spinning compact binaries, such templates are known to 3.5 PN order 
for the phase (3PN for the amplitude). The contributions from these high orders have a significant effect on 
parameter estimation (see Arun et al. 2005)

• Recent observational evidence indicates
that black holes generically have large
spins (close to maximal)

Motivation: building accurate templates for GW detection

include spin effects to the same level of accuracy
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PN approximation scheme (1/3)

rewrite Einstein eqs
hµ⌫ =

p
�ggµ⌫ � ⌘µ⌫

@µh
↵µ = 0 harmonic gauge

⇤hµ⌫ =
16⇡G

c4
⌧µ⌫

⌧µ⌫
⌧µ⌫ = |g|Tµ⌫ +

c4

16⇡G
⇤µ⌫

Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries 17

The exact expression of ⇤↵� , including all non-linearities, reads5

⇤↵� = �hµ⌫@2
µ⌫h↵� + @µh↵⌫@⌫h�µ +

1
2
g↵�gµ⌫@�hµ⌧@⌧h⌫�

�g↵µg⌫⌧@�h�⌧@µh⌫� � g�µg⌫⌧@�h↵⌧@µh⌫� + gµ⌫g�⌧@�h↵µ@⌧h�⌫

+
1
8
(2g↵µg�⌫ � g↵�gµ⌫)(2g�⌧g✏⇡ � g⌧✏g�⇡)@µh�⇡@⌫h⌧✏. (15)

As is clear from this expression, ⇤↵� is made of terms at least quadratic in the gravitational-field
strength h and its first and second space-time derivatives. In the following, for the highest post-
Newtonian order that we consider (3PN), we need the quadratic, cubic and quartic pieces of ⇤↵� .
With obvious notation, we can write them as

⇤↵� = N↵� [h, h] + M↵� [h, h, h] + L↵� [h, h, h, h] + O(h5). (16)

These various terms can be straightforwardly computed from Equation (15); see Equations (3.8)
in Ref. [38] for explicit expressions.

As said above, the condition (12) is equivalent to the matter equations of motion, in the sense
of the conservation of the total pseudo-tensor ⌧↵� ,

@µ⌧↵µ = 0 () rµT↵µ = 0. (17)

In this article, we look for the solutions of the field equations (13, 14, 15, 17) under the following
four hypotheses:

1. The matter stress-energy tensor T↵� is of spatially compact support, i.e. can be enclosed
into some time-like world tube, say r  a, where r = |x| is the harmonic-coordinate radial
distance. Outside the domain of the source, when r > a, the gravitational source term,
according to Equation (17), is divergence-free,

@µ⇤↵µ = 0 (when r > a). (18)

2. The matter distribution inside the source is smooth6: T↵� 2 C1(R3). We have in mind a
smooth hydrodynamical “fluid” system, without any singularities nor shocks (a priori), that
is described by some Eulerian equations including high relativistic corrections. In particular,
we exclude from the start any black holes (however we shall return to this question when we
find a model for describing compact objects).

3. The source is post-Newtonian in the sense of the existence of the small parameter defined
by Equation (1). For such a source we assume the legitimacy of the method of matched
asymptotic expansions for identifying the inner post-Newtonian field and the outer multipolar
decomposition in the source’s exterior near zone.

4. The gravitational field has been independent of time (stationary) in some remote past, i.e.
before some finite instant �T in the past, in the sense that

@

@t

⇥
h↵�(x, t)

⇤
= 0 when t  �T . (19)

5See also Equation (140) for the expression in d + 1 space-time dimensions.
6N, Z, R, and C are the usual sets of non-negative integers, integers, real numbers, and complex numbers; Cp(⌦)

is the set of p-times continuously di↵erentiable functions on the open domain ⌦ (p  +1).
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PN approximation scheme (2/3)
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c
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@µh
↵µ = 0

⇤hµ⌫ =
16⇡G

c4
⌧µ⌫

retardation effects are small
we can (PN) expand inside the 

integrals

Beyond leading order, even if the source has compact 
support, the support of the integral diverges at spatial 
infinity... first need for a regularization

How to impose the no incoming radiation condition?
... the definition of the appropriate inverse operator 
requires knowledge from the far-zone

see e.g. Blanchet’s Living Review for a detailed construction of the solution

Write the solution as formal PN series in powers of 1/c and solve 
iteratively order by order

⇤�1f = � 1

4⇡

X

n

(�1)n

n!

✓
@

c @t

◆n

FPB=0

Z
d3x0|x� x

0|n�1f(x0, t)



PN approximation scheme (2/3)
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PN approximation scheme (2/3)

@µh
↵µ = 0 harmonic gauge

⇤hµ⌫ =
16⇡G

c4
⌧µ⌫
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a

The most general solution in vacuum
can be obtained by combining 
post-Minkowskian expansion

+ multipole expansion

hµ⌫
ext

=
+1X

n=1

Gnhµ⌫
(n)[IL, JL,WL, XL, YL, ZL]



PN approximation scheme (2/3)
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Matching region

Both expansions are valid.  A matching procedure provides an 
expression of the multipole moments as integrals over the 
matter and the gravitational fields in the source.



PN approximation scheme (3/3)

In practice, the calculation is divided into two (coupled) sub-problems

Computation of the dynamics up to n-th PN order (near-zone resolution of the Einstein eqs)

Computation of the radiation up to n-th PN order

Newtonian-like equation of motion
dvi1
dt

= Ai
N +

1

c2
Ai

1PN +
1

c4
Ai

2PN +
1

c5
Ai

2.5PN +
1

c6
Ai

3PN +
1

c7
Ai

3.5PN +O(8)

quasi-circular orbits in the CM frame

‘’conserved’’ Energy

E = �µc2x

2

⇥
1 + e1x+ e2x

2 + e3x
3 +O(1/c8)

⇤

F =
32c5

5G
x

5
⌫

2
h
1 + f1 x+ f1.5 x

3/2 + f2 x
2 + f2.5 x

5/2 + f3 x
3 + f3.5 x

7/2 +O(8)
i

Finally, the balance equation provides the phase evolution
dE

dt
= �F

flux

x =

✓
Gm!

c

3

◆2/3

⇠ O(1/c2)



Progress of the spin PN computations: dynamics

LO Spin-Orbit (1/c3): 
 Barker and O’Connell (75, 79)
 Goldberger, Rothstein (06) (EFT approach)

NLO Spin-Orbit (1/c5): 
Tagoshi, Ohashi, Owen (98, 01)
Blanchet, Buonanno, Faye (06)
Damour, Jaranowski, Schäfer, (08) (ADM formalism)
Levi (10), Porto (10) (EFT)

Spin-Spin effects: 
LO (1/c4): Kidder, Will, Wiseman, (93)

            Porto (05) (EFT)
                Buonanno, Faye, Hinderer (13)
NLO (1/c6): Steinhoff, Hergt, Schäfer (08,10) (ADM)

 Porto, Rothstein (10), Levi (11) (EFT)
NNLO (1/c8) spin1-spin2: 
                 Hartung, Steinhoff (11) (ADM)
                 Levi (12) (EFT)

NNLO (1/c7): 
Hartung Steinhoff (11) (ADM)
Marsat, Bohe, Faye, Blanchet, (12)

dvi1
dt

= Ai
N +

1

c2
Ai

1PN +
1

c3
Ai

S
1.5PN +

1

c4

h
Ai

2PN +Ai

SS
2PN

i
+

1

c5

h
Ai

2.5PN +Ai

S
2.5PN

i

+
1

c6

h
Ai

3PN +Ai

SS
3PN

i
+

1

c7

h
Ai

3.5PN +Ai

S
3.5PN

i
+O(8)

Here we compute the 3.5PN spin-orbit (linear in spin) 
correction together with the evolution equations for 

the spins

We redefine our spin variable as S ⌘ c Sphys = �Gm2

so that S is of Newtonian order for maximally spinning compact objects.



Progress of the spin PN computations: Radiation

Spin-Orbit effects
 LO (1/c3):  Kidder, Will, Wiseman (93, 95)

 NLO (1/c5): Blanchet, Buonanno, Faye (06)

 NNLO (1/c7): Bohe, Marsat, Blanchet, (13)

So far, a wave generation formalism has only been derived in the harmonic gauge formulation 
(although EFT on the way (cf Porto (06))

For the flux

Tail SO effects
 LO (1/c6):  Blanchet, Buonanno, Faye (06)

 NLO (1/c8): Marsat, Bohe, Blanchet, Buonanno

Spin-Spin effects
 LO (1/c4):  Mikoczi, Vasuth, Gergely (05)

For the polarizations

SO LO (1/c3):  Kidder, Will, Wiseman (93, 95)
 Arun, Buonanno, Faye, Ochsner (09)

SS LO (1/c4): Kidder, Will, Wiseman (95, 96) Spin1-Spin2
    Buonanno, Faye, Hinderer Spin1-Spin1

tail LO (1/c6): Blanchet, Buonanno, Faye (06)

F =
32c5

5G
x

5
⌫

2
h
1 + f1 x+ f1.5 x

3/2 + f2 x
2 + f2.5 x

5/2 + f3 x
3 + f3.5 x

7/2 +O(4)
i
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Description of the system: pole-dipole formalism

Effective description in terms of spinning point particles: pole-dipole approximation

DSµ⌫

d⌧
= c2

�
pµu⌫ � p⌫uµ

�
,

Dpµ

d⌧
= �1

2
Rµ

⌫⇢�u
⌫S⇢�

Mathisson-Papapetrou 
equations of motion

Formlism developped by 
Mathisson, Papapetrou, Tulczyjew

generalized by Dixon, Bailey & Israel

T

µ⌫ = c

2

Z +1

�1
d⌧ p

(µ
u

⌫) �
(4)(x� y(⌧))p

�g(x)
� c

Z +1

�1
d⌧ r⇢

"
S

⇢(µ
u

⌫) �
(4)(x� y(⌧))p

�g(x)

#
.

Sµ⌫p⌫ = 0We work with the covariant Tulczyjew supplementary spin condition                    and we 
restrict to effects linear in the spins. The equations of motion reduce to

DSµ⌫

d⌧
= O(S2) ,

mc
Duµ

d⌧
= �1

2
Rµ

⌫⇢�u
⌫S⇢� +O(S2)

Such a point particle description has to be supplemented with some UV regularization procedure.
(Hadamard regularization, dimensional regularization)



Tests of the result

•Existence of 10 conserved integrals of the motion

•Lorentz invariance

•Test-mass limit

•Equivalence with the ADM result

(when neglecting radiation reaction terms)

The harmonic gauge condition is manifestly Lorentz invariant so our equation of 
motion must take the same form in two frames related to one another by a boost

Recover the motion of a test mass around Kerr and of a spinning test mass around 
Schwarzschild (linear effects in spin)

Extended the ‘‘contact’’ transformation
Y1 = x1 +

1

c3
Y

S

1.5PN
1 +

1

c4
Y

2PN
1 +

1

c5
Y

S

2.5PN
1 +

1

c6
Y

3PN
1 +

1

c7
Y

S

3.5PN
1 +O

✓
1

c8

◆

Energy,  Linear Momentum,  Angular Momentum, Center of Mass Position

together with the relation between both spin variables

Determined using the method of undetermined coefficients



Reduction of the result

We first rewrite our result in term of spin variables       of conserved Euclidian norm

We then reduce to the center of mass frame defined by 

Finally, we are mostly interested in quasi-circular orbits 

The spin evolution equations reduce to simple precession equations

Everything is expressed in terms of

derivative operation does not commute with the regularization operation at 1, and we have
generically for singular functions F in the class considered in Ref. [44]:5

d

dt
(F )1 = (@tF )1 + (vi1@iF )1 , (2.20)

where (G)1 represents the value ofG at particle 1 position in the sense of the Hadamard partie

finie. In order to present a closed-form expression for ⌦ij in terms of the metric potentials,
we first applied the total time derivative there according to the Leibniz rule on individual
monomials composingH ij, applying the distributivity ansatz [i.e. (FG)1 = (F )1(G)1] for the
products. We next replaced the accelerations by their expressions in terms of the potentials.
For the time derivatives of quantities regularized at 1, we resorted to Eq. (2.20). Finally, the
partial time derivatives of the potentials were eliminated in turn by means of the identities
(3.28) of Ref. [45], which are equivalent to the harmonic gauge condition.

Since we are working at linear order in the spins, only the non-spin parts of the metric
potentials enter the computation of the matrix ⌦ij. Most of those contributions are the
same as those required for the 2PN equations of motion without spin.6 There are only two
genuine 3PN potentials: One of them, Ẑij at Newtonian order, has the same structure as
Ŵij; The other one, Ŷi, which enters the term �16@[iŶ j] in Eq. (2.19), shows a higher order
of non-linearity (in powers of G). Only its regularized value can be computed, using dimen-
sional regularization in principle, as was done for the 3PN equations of motion without spin
obtained in [46]. Like for the term S̃jk(@ijŶk)1 appearing in the equations of motion (see
Section V of Paper I), we find that the corrections coming from the dimensional regulariza-
tion exactly cancel out because of the antisymmetrization due to the contraction with the
spin tensor. Thus, like in Paper I, Hadamard’s regularization is su�cient for our purpose
here. The remaining 3PN metric potential, T̂ , does not contribute.

Due to the length of the expression, we relegate to Appendix B the relation between
the conserved spin vector and the spin tensor in terms of the orbital variables derived from
Eqs. (2.2) and (2.9). We conclude this Section by giving the explicit expression for the
precession equation of the conserved spin 1:

dS1

dt
= ⌦1 ⇥ S1 . (2.21)

The vector ⌦1 may be expanded at 3PN order in the form:

⌦1 =
1

c2
⌦

1PN
1 +

1

c4
⌦

2PN
1 +

1

c6
⌦

3PN
1 +O

✓
1

c7

◆
. (2.22)

Except for the spin tensor, we use the same notations for the orbital variables as in Paper I:
(uv) denotes the scalar product u · v = uivi and w = u ⇥ v the cross product between u

and v, whose components are given by wi = "ijkujvk. At leading order, we have

⌦

1PN
1 =

G

r212
m2


3

2
n12 ⇥ v1 � 2n12 ⇥ v2

�
, (2.23)

5 This equation states that, formally, the Hadamard regularization commutes with the operator vµ1 @µ.
6 The non-spin part of the acceleration has the form ai = F i � dQi/dt with Qi = P i � vi; see Eqs. (3.5)

and Eqs. (3.7) in Paper I.
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P i = 0, Gi = 0

The emission of GW circularizes the orbit.  We look for solutions for which the separation r only varies due

ṙ = O(1/c5)
x =

✓
Gm!

c

3

◆2/3

Si �ijS
iSj = s2

⌦1 up to 3PN

Conserved spins are secularly constant at spin orbit level (required for Taylor approximants)

x = y1 � y2

r = |x|
v = v1 � v2,

and
S = S1 + S2

⌃ = m

✓
S2

m2
+

S1

m1

◆

to radiation reaction                        and change variable to

E = �µc

2
x

2

(
1 + x

✓
�3

4
� 1

12
⌫

◆
+ x

2

✓
�27

8
+

19

8
⌫ � 1

24
⌫

2

◆

+ x

3

✓
�675

64
+


34445

576
� 205

96
⇡

2

�
⌫ � 155

96
⌫

2 � 35

5184
⌫

3

◆

+
x

3/2

Gm

2


14

3
S` + 2

�m

m

⌃`

�
+

x

5/2

Gm

2

✓
11� 61

9
⌫

◆
S` +

�m

m

✓
3� 10

3
⌫

◆
⌃`

�

+
x

7/2

Gm

2

✓
135

4
� 367

4
⌫ +

29

12
⌫

2

◆
S` +

�m

m

✓
27

4
� 39⌫ +

5

4
⌫

2

◆
⌃`

�

+O
✓

1

c

8

◆



Flux calculation

... which can be expressed as integrals over  the matter and the gravitational fields in the source

C. Flux and orbital phasing for circular orbits

For the spin-orbit e↵ects at the post-Newtonian level considered in the present paper we
can neglect all the corrections O(1/c5) in the relations between the canonical and source
multipole moments, see Eqs. (2.4) and (2.5). Furthermore the relations between the radiative
and canonical moments, Eqs. (2.3), imply a spin-orbit contribution due to gravitational wave
tails and arising at the 3PN order; we ignore this contribution here since it has already been
computed in Ref. [31], and since the next-to-leading tail contribution would enter the result
at 4PN order only. Finally, for our present purpose, we can replace all the radiative moments
UL and VL by the corresponding source moments IL and JL up to the 3.5PN spin-orbit level.
We can therefore use for the flux (2.2) at that order the expression

F =
G

c5

⇢
1

5
I
(3)
ij I

(3)
ij +

1

c2


1

189
I
(4)
ijkI

(4)
ijk +

16

45
J
(3)
ij J

(3)
ij

�

+
1

c4


1

9072
I
(5)
ijklI

(5)
ijkl +

1

84
J
(4)
ijkJ

(4)
ijk

�
+

1

c6


4

14175
J
(5)
ijklJ

(5)
ijkl

�
+ (tails) +O

✓
1

c8

◆�
.

(3.11)

The other terms do not contribute to the spin-orbit e↵ect at the 3.5PN order. We insert
the explicit results (3.10) for the source multipole moments into Eq. (3.11), we compute the
time derivatives using systematically the equations of motion derived in Papers I & II, and
we specialize the result to the case of quasi-circular orbits, again using the material from
Papers I & II.

It is useful to introduce an orthonormal moving triad {n,�, `} defined by n = x/r,
` = LN/|LN| where LN ⌘ m⌫ x ⇥ v denotes the Newtonian orbital angular momentum,
and � = ` ⇥ n. Then the spin-orbit contributions in the flux will depend only on the
projections of the spins perpendicular to the orbital plane, namely S` ⌘ ` ·S and ⌃` ⌘ ` ·⌃,
where we recall that S and ⌃ are defined by Eqs. (3.9). Furthermore we denote the relevant
post-Newtonian parameter for circular orbits by

x =

✓
Gm!

c3

◆2/3

, (3.12)

where ! is the orbital frequency, related to the orbital separation r by Eq. (4.2) in Paper II.
We are then left with the main result of the present work, namely the spin-orbit contribution
to the flux up to order 3.5PN, as follows:

F
S
=

32c5

5G
x5 ⌫2

✓
x3/2

Gm2

◆⇢
�4S` � 5

4

�m

m
⌃`

+x

✓
�9

2
+

272

9
⌫

◆
S` +

✓
�13

16
+

43

4
⌫

◆
�m

m
⌃`

�

+x3/2


�16⇡ S` � 31⇡

6

�m

m
⌃`

�

+ x2

✓
476645

6804
+

6172

189
⌫ � 2810

27
⌫2

◆
S` +

✓
9535

336
+

1849

126
⌫ � 1501

36
⌫2

◆
�m

m
⌃`

�

+O
✓

1

c5

◆�
. (3.13)
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The flux can be expressed in terms of the (derivatives of) multipole moments

New regularized integrals to compute + use equations of motion to 3.5PN to compute time derivatives

Tests of the result:
•test mass limit (see Tagoshi et al 1996)
•source moments for a single boosted Kerr black hole

IL(t) = FPB=0

Z
d

3
x

Z 1

�1
dz

⇢
1

c

2
�lx̂L(⌧

00 + ⌧

ii)� 4(2l + 1)

c

3(l + 1)(2l + 3)
�l+1x̂iL⌧

0i(1)

+
2(2l + 1)

c

4(l + 1)(l + 2)(2l + 5)
�l+2x̂ijL⌧

ij(2)

�
(x, t+ z|x|/c)

F
S

=
32c5

5G
x

5
⌫

2

✓
x

3/2

Gm

2

◆⇢
�4S` � 5

4

�m

m

⌃` +x

✓
�9

2
+

272

9
⌫

◆
S` +

✓
�13

16
+

43

4
⌫

◆
�m

m

⌃`

�

+x

2

✓
476645

6804
+

6172

189
⌫ � 2810

27
⌫

2

◆
S` +

✓
9535
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+

1849

126
⌫ � 1501
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⌫

2

◆
�m

m

⌃`

��

+ (NS) + (tails) +O
✓

1

c

8

◆
.
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• The pole-dipole effective formalism

• Reduction of the result (to an useful form)

• Tests of the result

• Impact of these new results for data analysis 
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Nitz, Lundgren, Brown, Ochsner, Keppel, Harry (July 2013)

Match between waveforms with and without 3.5PN SO corrections (+3PN SO tail) computed with 
Advanced LIGO noise curve (TaylorF2, typically 1.4+10 M systems so no need for NR)

Contribution to the matches

Comparable picture for other approximants. Need to push the series further!

Computation of the 4PN SO tail term in the flux Marsat, Bohe, Blanchet, Buonanno arXiv:1307.6793

F =
32c5

5G
x

5
⌫

2
h
1 + f1 x+ f1.5 x

3/2 + f2 x
2 + f2.5 x

5/2 + f3 x
3 + f3.5 x

7/2 + f4 x
4 +ONS(x

4)
i

SO tail contributions (non-linearities in the 
propagation of the waves)



Phase estimates

LIGO/Virgo 1.4M� + 1.4M� 10M� + 1.4M� 10M� + 10M�

Newtonian 15952.6 3558.9 598.8

1PN 439.5 212.4 59.1

1.5PN �210.3 + 65.61�1 + 65.62�2 �180.9 + 114.01�1 + 11.72�2 �51.2 + 16.01�1 + 16.02�2

2PN 9.9 9.8 4.0

2.5PN �11.7 + 9.31�1 + 9.32�2 �20.0 + 33.81�1 + 2.92�2 �7.1 + 5.71�1 + 5.72�2

3PN 2.6� 3.21�1 � 3.22�2 2.3�13.21�1 � 1.32�2 2.2� 2.61�1 � 2.62�2

3.5PN �0.9 + 1.91�1 + 1.92�2 �1.8+11.11�1 + 0.82�2 �0.8 + 1.71�1 + 1.72�2

4PN (NS)� 1.51�1 � 1.52�2 (NS)�8.01�1 � 0.72�2 (NS)� 1.51�1 � 1.52�2

TABLE I. Spin-orbit contributions to the number of gravitational-wave cycles NGW = (�max �
�min)/⇡. For binaries detectable by ground-based detectors LIGO/Virgo, we show the number of
cycles accumulated from !min = ⇡ ⇥ 10Hz to !max = !ISCO = c3/(63/2Gm). For each compact
object we define the magnitude �A and the orientation A of the spin by SA ⌘ Gm2

A �A ŜA and
A ⌘ ŜA · `. For comparison, we give all the non-spin contributions up to 3.5PN order, but the
non-spin 4PN terms (NS) are yet unknown. We neglect all the spin-spin terms.

1

crude phase estimate, no match,T2
... but comparable magnitude



Conclusions

We have computed the NNLO spin-orbit effects (3.5PN for maximally 
spinning bodies) in the dynamics of the binary and in the emitted flux .

These new corrections produce significant mismatches with previous lower 
order waveforms at least in certain regions of parameter space. They have to 
be incorporated into the data-analysis pipelines.

We have also computed the NLO spin-orbit contribution to the tail effect 
which seems to be (crude estimate!) of comparable magnitude...





⌧µ⌫

rewrite Einstein eqs
hµ⌫ =

p
�ggµ⌫ � ⌘µ⌫

@µh
↵µ = 0 harmonic gauge

⇤hµ⌫ =
16⇡G

c4
⌧µ⌫

⌧µ⌫ = |g|Tµ⌫ +
c4

16⇡G
⇤µ⌫
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The exact expression of ⇤↵� , including all non-linearities, reads5

⇤↵� = �hµ⌫@2
µ⌫h↵� + @µh↵⌫@⌫h�µ +

1
2
g↵�gµ⌫@�hµ⌧@⌧h⌫�

�g↵µg⌫⌧@�h�⌧@µh⌫� � g�µg⌫⌧@�h↵⌧@µh⌫� + gµ⌫g�⌧@�h↵µ@⌧h�⌫

+
1
8
(2g↵µg�⌫ � g↵�gµ⌫)(2g�⌧g✏⇡ � g⌧✏g�⇡)@µh�⇡@⌫h⌧✏. (15)

As is clear from this expression, ⇤↵� is made of terms at least quadratic in the gravitational-field
strength h and its first and second space-time derivatives. In the following, for the highest post-
Newtonian order that we consider (3PN), we need the quadratic, cubic and quartic pieces of ⇤↵� .
With obvious notation, we can write them as

⇤↵� = N↵� [h, h] + M↵� [h, h, h] + L↵� [h, h, h, h] + O(h5). (16)

These various terms can be straightforwardly computed from Equation (15); see Equations (3.8)
in Ref. [38] for explicit expressions.

As said above, the condition (12) is equivalent to the matter equations of motion, in the sense
of the conservation of the total pseudo-tensor ⌧↵� ,

@µ⌧↵µ = 0 () rµT↵µ = 0. (17)

In this article, we look for the solutions of the field equations (13, 14, 15, 17) under the following
four hypotheses:

1. The matter stress-energy tensor T↵� is of spatially compact support, i.e. can be enclosed
into some time-like world tube, say r  a, where r = |x| is the harmonic-coordinate radial
distance. Outside the domain of the source, when r > a, the gravitational source term,
according to Equation (17), is divergence-free,

@µ⇤↵µ = 0 (when r > a). (18)

2. The matter distribution inside the source is smooth6: T↵� 2 C1(R3). We have in mind a
smooth hydrodynamical “fluid” system, without any singularities nor shocks (a priori), that
is described by some Eulerian equations including high relativistic corrections. In particular,
we exclude from the start any black holes (however we shall return to this question when we
find a model for describing compact objects).

3. The source is post-Newtonian in the sense of the existence of the small parameter defined
by Equation (1). For such a source we assume the legitimacy of the method of matched
asymptotic expansions for identifying the inner post-Newtonian field and the outer multipolar
decomposition in the source’s exterior near zone.

4. The gravitational field has been independent of time (stationary) in some remote past, i.e.
before some finite instant �T in the past, in the sense that

@

@t

⇥
h↵�(x, t)

⇤
= 0 when t  �T . (19)

5See also Equation (140) for the expression in d + 1 space-time dimensions.
6N, Z, R, and C are the usual sets of non-negative integers, integers, real numbers, and complex numbers; Cp(⌦)

is the set of p-times continuously di↵erentiable functions on the open domain ⌦ (p  +1).
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⇤ = ⌘µ⌫@µ@⌫ ‘‘flat’’ d’Alembertian

     stress-energy pseudo tensor
of matter + gravitational fields

PN iteration of the Einstein’s equations in harm gauge

which obey inhomogeneous flat d’Alembertian equations sourced by       and by the lower order potentialsTµ⌫
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The metric is parametrized via a set of «potentials»

� = (T 00 + T ii)/c2

At 1PN, with At 2PN,�i = T 0i/c
�ij = T ijwith

...

In the near zone, solution computed with the retarded inverse d’Alembertian (PN expansion of the retardations)
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Effect of the spin on the inspiral

The components of the spins that 
are orthogonal to the orbital plane 

change the inspiral rate, i.e. in 
particular the phase

The components of the spins in the 
orbital plane cause the orbital plane 

to precess: strong amplitude 
modulations
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Spin ``power counting’’

dvi1
dt
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The spin of a rotating compact body is of the order of Strue ⇠ ml vspin with l ⇠ Gm

c2

For maximally rotating bodies, vspin ⇠ c so

For slowly rotating bodies, so

Strue ⇠ �
Gm2

c

vspin ⌧ c

is formally 0.5 PN

is formally 1 PNStrue

We adopt the following spin (re-)definition

For maximally rotating objects, our spin variable is Newtonian

S ⌘ c Strue = �Gm2

With this definition, the spin enters the Newtonian-like equation of motion at the following orders:



Hadamard regularization of the potentials

The point particle description has to be supplemented with some UV regularization procedure to make sense of
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For most of the calculation, the pure Hadamard-Schwartz (pHS) prescription proved sufficient
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• Gel'Fand-Shilov formula for homogeneous functions to compute the distributional parts of the derivatives
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However, for one of the terms needed to compute the acceleration, namely               , the pHS regularization yields 
an ambiguous result.
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