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Thick accretion disks in the universe

Thick accretion disks: believed to be formed in NS-NS and
NS-BH mergers (a mechanism for sGRB), as well as in the
CC of massive stars (a mechanism for lGRB).
Rezzolla et al (2010) have shown that massive, thick disks
form in simulations of unequal mass NS-NS mergers.
to explain sGRB as energy released from accreted
material coming from a thick disk, it must survive long
enough > stability.
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Instabilities of disks

Papalouizou-Pringle Instability (PPI) (Papaloizou and
Pringle (1984)): axisymmetry in the disk is broken and m
planetary structures evolve, where m is the dominant
mode.

Runaway Instability (RI) (Abramowicz et al (1983)): initially
stable disk is being accreted almost completely in a few
dynamical timescales onto the central object.

Aim to understand under which conditions (and if) these
instabilities develop, and to understand the gravitational
wave (GW) signal corresponding to the instabilities.
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Model and initial data

Initial data are self-gravitating, massive tori having
constant angular momentum profiles around non-rotating
stellar mass black holes, described in Stergioulas (2011).

Quasi-isotropic (QI) coordinates are used to describe the
rotating spacetime around the BH, the metric takes the
following form:

ds2 = −λ2dt2 + e2α(dr̄2 + r̄2dφ2) +
B2

λ2 r̄2sin2θ(dφ− ωdt)2

Starting from an AJS disk (Polish doughnut), the field
equations of the QI spacetime and the hydrostatic
equilibrium equations are solved iteratively until an
equilibrium solution is found.
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Simulation software

Simulations were performed using the publicly available
Einstein Toolkit (www.einsteintoolkit.org).

Spacetime evolution: McLachlan thorn, which solves the
Einstein Equations in the BSSN formulation.

Hydro evolution: GRHydro thorn, which solves the
relativistic Euler equations in conservative form (Valencia
formulation), using High Resolution Shock Capturing
schemes.

Mesh: Carpet Code, providing AMR.

www.einsteintoolkit.org
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Initial data, filling the BH

Initial 2D axisymmetric does not fill event horizon (EH).
Manual initialisation of spacetime variables inside EH
introduces small perturbation as system relaxes to
puncture solution.
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Other codes and their results

Until very recently, full 3D GR simulations of self-gravitating
tori around BH were not possible.

Kiuchi et al (2011), Montero et al (2010) (in 2D) and
Korobkin et al (2011,2012) performed simulations of
self-gravitating thick tori with different codes.

We use a fourth code and different setup in our current
work to redo some of the simulations of Korobkin et al
(2011/2012) with similar initial data.
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Models
Model ρmax [G=c=M�=1] l Mtorus/MBH forb [Hz]

D2 1.05e-05 3.75, constant 4.11e-02 1360
C1B 5.91e-05 3.67, constant 1.51e-01 1300
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evolution of ρ model D2


D2_xy_zoom_rho.mpeg
Media File (video/mpeg)
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Results for model D2

Model D2
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Ṁ
(t
)
M

⊙
/
s

time[orbits]

|D1|
|D2|
|D3|
|D4|

BH |r|
Re(rΨ4)
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evolution of ρ model C1B


C1B_xy_zoom_rho.mpeg
Media File (video/mpeg)
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Results for model C1B

Model C1B
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BH movement in the evolutions

BH trajectories
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Tilted Disks: Motivation and previous work

Computationally cheaper (due to symmetries) to consider
LBH and Ldisk aligned.

Situation idealized, expected that SNS of merging NS aren’t
aligned during inspiral.

Pioneering work in this field by Fragile et al (2005,2006)
who have analysed tilted disks in the Cowling (fixed
background spacetime) approximation.

Perform simulations with spacetime evolution to investigate
effects of BH response to disk precession.

Rotate coordinate system about x-axis by angle θ prior to
setting up a rotating Kerr BH, Hydro is unchanged
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Tilted disk D2 isovolume animation


D2_tilted_isovolume.mpeg
Media File (video/mpeg)
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Tilted disk BH behaviour

BH spin and trajectory
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Density oscillations in the torus: explanation for
QPOS?

there are KHz QPOs in
LMXRB, detected by the
RXTE satellite.
Those QPOs could be
global oscillation modes
in disk, excited by
perturbations
Zanotti et al (2004),
Montero et al (2004)
performed studies in
Cowling and linear
perturbation theory

x-ray spectrum from Sco X1,
image from NASA
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QPOs II: PSD D2

PSD of D2
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QPOs III: o1 vs f

Figure by P. Montero
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Summary

Performed full 3D general relativistic simulations of thick
tori around BH, as well as tilted disks.

Some of the investigated models are stable, while others
develop the PPI.

No observation of the RI yet.

Analysed density oscillations in the disks in the context of
QPOs.
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The End

Thank you for your attention!

This work is supported by the Spanish Ministerio de Educación
y Ciencia in the project Computational Relativistic Astrophysics
(AYA2010-21097-c03-01).
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