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Isotropic LQC 1

Gravitational part of the classical Hamiltonian in Einstein
Cosmology (flat FLRW geometry) HG = − 3

γ2β
2V .

1 β = γH, where γ ∼= 0.23 is the Barbero-Immirzi parameter.
2 V = a3 is the volume.
3 β and V are canonically conjugated: {β,V} = γ/2

In LQC the discrete nature of space-time is assumed, this leads
to a complicated Hilbert space: the quotient of Besicovitch’s
space (almost periodic functions) by its subspace of null
functions. (Asthekar, Singh, Class. Quant. Grav. (2011),
arXiv:1108.0893).

Besicovitch’s space is the closure of trigonometric polynomials
under the semi-norm (in the β-representation)

||Ψ||2 = lim
L→∞

1
2L

∫ L

−L
|Ψ(β)|2dβ.
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Isotropic LQC 2

The elements of this space have the expansion

Ψ(β) =
∑
n∈Z

αneiλnβ/2

with λn ∈ R and αn is a square-summable sequence.
V̂ = −i γ2

d
dβ is well-defined. However, β does not admit a

quantum operator because βΨ(β) has infinite norm!!!!!

REMARK: In many work, Besicovitch’s space is named Bohr’s
(Harald Bohr, Niels’s brother) space. However, Bohr introduced
the space of uniform almost periodic functions, which is a
Banach but not a Hilbert space.

The classical Hamiltonian is modified making the replacement
β → sin(λβ)

λ , where λ2 =
√

3
2 γ is the minimum eigenvalue of the

area operator in LQG ( Haro, Elizalde EPL (2010)).

J. Haro Cosmological perturbations in teleparallel LQC



Isotropic LQC 3

From this ”holonomy corrected”Hamiltonian, using the
corresponding Hamilton equations and the Hamiltonian
constrain, the Friedmann equation is modified as follows:

H2 =
ρ

3

(
1− ρ

ρc

)
, (1)

where ρc = 3
λ2γ2
∼= 0.4ρPl is the so-called critical density.

Remarks:
1 Equation (1) depicts an ellipse in the plane (H, ρ). Then,

“big bang“ and ”big rip“ singularities are forbidden.
2 In EC, Friedmann’s equation depicts a parabola which

allows the existence of this kind of singularities.
3 For a non-phantom universe, it moves clockwise along the

ellipse and bounces at ρ = ρc .
4 When the universe reaches the bounce all its points are

causally connected. The horizon problem doesn’t exist in
LQC.
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Isotropic F (T ) gravity 1

Teleparallel theories are based in the Weitzenböck space-time.
To build this space-time, one chooses a global system of four
orthonormal vector fields {ei} related to the vectors {∂µ} via
the relation ei = eµi ∂µ. In addition, one introduces a covariant
derivative ∇ that defines absolute parallelism with respect the
global basis {ei}, that is, ∇ei = 0. From this, one acquires the
metric Weitzenböck connection Γγµν = eγi ∂νei

µ. (Note that this
connection is metric and therefore it satisfies ∇g = 0.) (Haro,
Amoros PRL (2013), arXiv:1211.5336)

Due the absolute parallelism this connexion is curvature-free
(Riemann tensor vanishes) but has torsion!!!

The basic invariant is the scalar torsion, namely T . For a flat
FLRW geometry, it is easily obtained from the scalar curvature
because GR can also be built with an action linear in T . Then,
removing the total derivative that appears in the Hilbert action
one gets T = −6H2.
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Isotropic F (T ) gravity 2

The Lagrangian in F (T ) gravity (flat FLRW geometry) is

LT = VF (T ) + LM , (2)

being LM the matter Lagrangian density.

Legendre’s transformation leads to the following Hamiltonian
density

HT =

(
2T

dF (T )

dT
− F (T ) + ρ

)
V . (3)

The Friedmann equation is obtained from the constrain HT = 0

ρ = −2
dF (T )

dT
T + F (T ) ≡ G(T ). (4)

Conversely, given a curve of the form ρ = G(T ) one can find
the Lagrangian density LT , integrating (4) obtaining as a result
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Isotropic F (T ) gravity 3

F (T ) = −
√
−T
2

∫
G(T )

T
√
−T

dT . (5)

Splitting the ellipse in two pieces ρ = G−(T ) (the branch where
Ḣ < 0) and ρ = G+(T ) (the branch where Ḣ > 0), where

G±(T ) =
ρc

2

(
1±

√
1 +

2T
ρc
,

)
. (6)

the modified Friedmann equation in LQC could be obtained
using the following function

F±(T ) = ±
√
−Tρc

2
arcsin

(√
−2T
ρc

)
+ G±(T ), (7)

which is the basis of the teleparallel formulation of LQC.
(Bamba, Haro, Odinsov, JCAP (2013), arXiv:1211.2968).
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Scalar perturbation in teleparallel LQC 1

Longitudinal gauge ds2 = (1 + 2Φ)dt2 − a2(1− 2Φ)dx2.
Lagrangian matter density LM =

(1
2 ϕ̇− V (ϕ)

)
V , with

ϕ = ϕ̄+ δϕ (ϕ̄ being the homogeneous part of the field).
Equation of evolution for the newtonian potential (Haro,
arXiv:1309.0352)

Φ′′ − c̃2
s ∆Φ + 2

(
H−

(
ϕ̄′′

ϕ̄′
+ ε

))
Φ′ + 2

(
H′ −H

(
ϕ̄′′

ϕ̄′
+ ε

))
Φ = 0. (8)

Where we have introduced the notation

1 Ω = 1− 2ρ
ρc

and ε = 1
2

Ω′

Ω

2 c̃2
s = 2|Ω|

∣∣∣dF±(T )
dT

∣∣∣, with∣∣∣∣dF±(T )

dT

∣∣∣∣ =
ρc

4ρ
√

ρc
ρ − 1

arcsin
(

2ρ
ρc

√
ρc

ρ
− 1
)
. (9)
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Scalar perturbation in teleparallel LQC 2

The dynamical equation for the newtonian potential eq. (8) is
obtained combining the equations:

c̃2
s ∆Φ− 3HΦ′ −

(
H′ + 2H2

)
Φ =

Ω

2

(
δϕ′ϕ̄′ + δϕ

∂V (ϕ̄)

∂ϕ
a2
)

(10)

Φ′ +HΦ =
Ω

2
δϕϕ̄′ (11)

Φ′′ + (3H− 2ε) Φ′ +
(
H′ + 2H2 − 2Hε

)
Φ =

Ω

2

(
δϕ′ϕ̄′ − δϕ∂V (ϕ̄)

∂ϕ
a2
)

(12)

REMARK: These equations only differ from the classical ones
in the velocity of sound, the factor Ω that appears in the right
hand side and with the terms containing ε in the third equation.
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Mukhanov-Sasaki equation for scalar perturbations 1

Following Mukhanov’s book (pages 336-337) we introduce the
variables

v = a

√
|Ω|

c̃s
(δϕ+

ϕ̄′

H
Φ); z =

a
√
|Ω|ϕ̄′

c̃sH
(13)

and

u± = ∓ 2aΦ√
|Ω|ϕ̄′

; θ =
1

c̃sz
, (14)

from equations (10) and (11) one gets

c̃s∆u± = z
(v

z

)′
; θ

(u±
θ

)′
= c̃sv . (15)
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Mukhanov-Sasaki equation for scalar perturbations 2

Performing the Laplacian in the second equation and using the
first one, one gets the Mukhanov-Sasaki equation

v ′′ − c̃2
s ∆v − z ′′

z
v = 0. (16)

Note alseo that, in LQC as a F (T ) theory, the variable v is
related with the curvature fluctuation in co-moving coordinates

ζ = Φ− H
Ḣ

(Φ̇ + HΦ), (17)

by the relation v = zζ.

REMARK: In many works is stated that equation of type (16)
comes from the dynamical equation of the newtonian potential
eq. (8). I’ve spent many hours trying to do it, but I couldn’t!!!
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Power spectrum in a matter dominated universe 1

For a matter dominated universe the scalar factor is given by
a(t) =

(3
4ρc t2 + 1

)1/3
.

When holonomy correction are small (ρ� ρc) the classical
Mukhanov-Sasaki equation for a matter-dominated universe is
recovered,

v ′′k +

(
k2 − a′′

a

)
vk = 0⇐⇒ v ′′k +

(
k2 − 2

η2

)
vk = 0. (18)

At early times the universe must be in the Bunch-Davies
vacuum, i.e., when η → −∞

vk (η) =

√
−πη

4
H(1)

3/2(−kη). (19)

When time moves forward the modes leave the Hubble radius.
For a matter-dominated universe in EC, modes well outside of
the Hubble radius are characterized by the condition
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Power spectrum in a matter dominated universe 2

k2η2 � 1,⇐⇒ k2 �
∣∣∣∣a′′a
∣∣∣∣⇐⇒ k2 �

∣∣∣∣ 1
c̃2

s

z ′′

z

∣∣∣∣ . (20)

When holonomy effects are not important, for modes well
outside, the M-S equation becomes

v ′′k −
z ′′

z
vk = 0, (21)

which solution is obtained using the method of reduction

vk (η) = B1(k)z(η) + B2(k)z(η)

∫ η

−∞

d η̄
z2(η̄)

. (22)

Matching this solution with (19) one gets

B1(k) =

√
8
3

k3/2

ρc
B2(k) = i

√
3
8

ρc

2k3/2 . (23)
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Power spectrum in a matter dominated universe 3

Now we consider modes that in the contracting phase leave the

Hubble radius, then evolve satisfying k2 �
∣∣∣∣ 1

c2
s,±

z′′
z

∣∣∣∣, and in the

classical regime are still well outside. For these modes one has

vk (η) = (B1(k) + B2(k)R)z(η), (24)

where R ∼=
∫∞
−∞

d η̄
z2(η̄)

, becase η is large enough.
The scalar power spectrum is scale invariant and is given by

Pζ(k) ≡ k3

2π2 |ζk (η)|2 =
k3

2π2

∣∣∣∣vk (η)

z(η)

∣∣∣∣2 ∼=
3ρ2

c
64π2 R2 =

ρc

36π2C
2, (25)

where C = 1− 1
32 + 1

52 − 1
72 + · · · = 0.915965 . . . is the

Catalan’s constant.
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Power spectrum in a matter dominated universe 4

Some remarks:
1 Since ρpl = 64π2, to agree with the observed value
Pζ(k) ∼ 10−9 one has to take ρc ∼ 10−9ρpl , which is in
contradiction with its current value ρc ∼= 0.4ρpl . In fact,
since ρc = 2

√
3

γ3 , to get ρc ∼ 10−9ρpl , one has to take as a
value of the Barbero-Immirzi parameter γ ∼ 10−3, which is
smaller than its current value 0.2375 obtained relating the
black hole entropy in LQC with the Bekenstein-Hawking
entropy formula (Miessner, Class.Quant.Grav. (2004)
arXiv:0407052).

2 This contradiction does not appears in our version of LQC,
where ρc could be understood as a parameter, that seems
to be close to 10−9ρpl .

3 For this value of the critical density, geometric quantum
effects does not affect the evolution of the universe in
teleparallel LQC.
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Tensor perturbations in teleparallel LQC 1

In teleparallel LQC, the equation of tensor perturbations can be
obtained from the equation (Cai, Cheng, Dent, Dutta, Saridakis,
Class.Quant.Grav. (2011) arXiv:1104.4349)

dF±(T )

dT

(
ḧa

i −
∆ha

i
a2 + 3Hḣa

i

)
+ Ṫ ḣa

i
d2F±(T )

dT 2 = 0. (26)

Performing the change of variables

vt ≡
ah√∣∣∣dF±(T )

dT

∣∣∣ , zt ≡
a√∣∣∣dF±(T )
dT

∣∣∣ , (27)

where h represents the two degrees of freedom of ha
i , we have

obtained the following M-S equation for tensor perturbations

v ′′t −∆vt −
z ′′t
zt

vt = 0. (28)
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Tensor perturbations in teleparallel LQC 2

We have calculated the ratio of tensor to scalar perturbations
for a matter dominated universe, obtaining

r ≡ Ph(k)

Pζ(k)
∼= 6. (29)

Remarks:
1 This ratio is of the order 1, which coincides with the current

calculations in F (T ) gravity.
2 However it does not agree with the current CMB bound

r . 0.2.
3 Assuming a matter-dominated at very early time (to

preserve the scale invariant spectrum), but for the major
part of the evolution considering a non-phantom universe
with linear equation of state P = ωρ with ω < 0, scalar
perturbations are amplified and the ratio of tensor to scalar
perturbations is of the order r ∼ (1 + ω)2. Then, choosing
an appropriate value of ω one will achieve the bound.
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Comparison with holonomy corrected LQC 1

The idea of introduccing holonomy corrections is very simple:
starting from the perturbed classical Hamiltonian the
introduction of holonomy corrections, like in isotropic models, is
based in the replacement c̄ → sin(nµ̄c̄)

nµ̄ , where c̄ = γȧ is the
Asthekar connection and n ∈ N \ {0}. (Bojowald, Hossain PRD
(2008), arXiv:0709.2365)

PROBLEM: the algebra of constrains ceases to be preserved,
i.e., in the Poisson brackets of the constrains it appears
additional terms called anomalies.

SOLUTION: anomalies could be removed and the algebra of
constrains restored inserting some counter-terms. However
some of them must contain the Asthekar connection which
does not have a quantum analogue. (Cailleteau, Mielczarek,
Barrau,Grain, Class.Quant.Grav (2012), arXiv:1111.3535)
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Comparison with holonomy corrected LQC 2

The evolution equation for the newtonian potencial in holonomy
corrected LQC, is the same as in teleparallel LQC (eq. (8)), but
with a square of the velocity of sound iqual to c2

s = Ω = 1− 2ρ
ρc

.

Note that in holonomy corrected LQC, c2
s > 0 when ρ < ρc/2

however when ρ > ρc/2 one has c2
s < 0, what means that in the

super-inflationary phase, eq. (8) becomes elliptic. This
behavior never happens in our formulation of LQC where c̃2

s is
always positive, and thus, the equation is always hyperbolic.

The power spectrum for scalar perturbations in holonomy
corrected LQC, is very similar to the one obtained in teleparallel
LQC (eq. (25): (Wilson-Ewing, JCAP (2013), arXiv:1211.6269)

Pζ(k) =
ρc

576
. (30)

J. Haro Cosmological perturbations in teleparallel LQC



Comparison with holonomy corrected LQC 3

The Mukhanov-Sasaki equation for tensor perturbations in
holonomy corrected LQC is (Cailleteau, Barrau, Vidotto PRD
(2012), arXiv:1206.6736)

v ′′t − c2
s ∆vt −

z ′′t
zt

vt = 0, (31)

with zt ≡ a√
Ω

and vt ≡ hzt .

It’s important to realize that equation (31) has two singular
points, at the beginning and at the end of the super-inflationary
phase, what means that there is not any objective criterium of
continuity to define the solution at these points.
Thus, there are infinite ways to match solutions at these points,
and consequently infinite mode functions could be used to
calculate the power spectrum of tensor perturbations.
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Comparison with holonomy corrected LQC 4

For example, when holonomy corrections are taken into
account, for the modes we are considering, zt = a√

Ω
is a

solution, but z̃t = a√
|Ω|

is another one. In fact, one can build

infinite solutions, because we cannot impose its continuity at
the singular points.

Taking as a mode solution zt one obtains r ∼= 0. However using
z̃t we have obtained r ∼= 27

π2 which is of the order 1.

Finally, note that in teleparallel LQC, the corresponding
Mukhanov-Sasaki equation for tensor perturbations (eq. (28))
has no singular points, what means that the solution

zt = a
∣∣∣dF±(T )

dT

∣∣∣−1/2
is unambiguously defined.
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Conclusions

1 Teleparallel LQC in the matter-bounce scenario could be
an alternative to standard slow-roll inflation. A scalar field
that drive a extremely huge expansion of the universe
in a very brief period of time, after that release its
energy to created all the matter of the universe
(religious people believe that the seventh day it took a
nap), is not needed.

2 The big bang singularity is avoided and provides an scale
invariant spectrum for a matter-dominated universe.

3 The theory provides a very simple non-singular bounce
(LQC) and has the advantages of F (T ) gravity (velocity of
sound always positive, non-singular points in the M-S
equation for tensor perturbations,...).

THANKS !!!!!
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