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Motivation

Ï A recent proposition by R. Penrose advocates a cyclic cosmological
model in which each cycle in the history of the universe (aeon) starts
and ends in a state where only radiative matter is present (Conformal
Cyclic Cosmology). The late stage of the evolution of each aeon is
dominated by the cosmological constantΛ.

Ï This allows for an introduction of a conformal factor that realizes a
transition from a late part of a given aeon to the early part of the next
aeon. A conformal structure of spacetime survives in such a
transition, with a regular (finite) Weyl tensor.

Ï A key point in this scenario is to get rid of non-radiative matter in the
late epoch of each aeon. There are some possibilities to do this, e.g.,
particle decay. An appealing idea: all matter falls into black holes,
that can subsequently evaporate, producing mostly radiation.

Ï Here we investigate the possibility of an efficient accretion of matter
onto black holes in theΛ-dominated universe.



Ï We will work in the framework of Einstein–Straus mode.

Ï A spherical region with Schwarzschild–(anti-)de Sitter metric is glued
to an exterior FLRW solution. This gluing was worked out by
Balbinot, Bergamini and Comastri Phys. Rev. D38, 2415 (1988).

Ï Then, it is enough to consider accretion occurring in the
Schwarzschild–(anti)de Sitter spacetime.

Ï Here we consider the simpliest, spherically symmetric, steady
Bondi-type accretion flows.

Ï One can also investigate a similar situation taking into account the
self-gravity of the accreting fluid – a numerical work of Karkowski and
Malec, Phys. Rev. D87, 04407 (2013).



Schwarzschild–(anti-)de Sitter metric in polar coordinates:
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It is convenient to introduce new Eddington–Finkelstein type coordinates.
We define Eddington–Finkelstein time tEF by

dt = dtEF −
2m

r + Λ
3 r2

1− 2m
r − Λ

3 r2
dr.

In the new coordinates the metric can be written as
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Ï The motion of the fluid is described by standard conservation laws

∇µ(ρuµ) = 1p−g
∂µ

(p−gρuµ
)= 0, (1)

∇µ
(
(e+p)uµuν+pgµν

)= 0. (2)

Here uµ denotes the four-velocity of the fluid, ρ is the baryonic
density, p is the pressure, and e denotes the energy density. We will
also use the specific enthalpy h = (e+p)/ρ and the local speed of
sound a.

Ï For a spherically symmetric, steady flow:

r2ρur = const, (3)

h

√
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r
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3
r2 + (ur)2 = const. (4)

Remarkably, the above equations have the same form in the standard
polar gauge, and in the Eddington–Finkelstein-type coordinates
introduced in the previous slide.



Ï Analytic solutions can be found for equations of state p = ke, where
k = 1/3,1/2,1.

Ï For polytropic fluids (p = KρΓ) one needs simple numerics.

Ï We assume that the fluid region extends up to r = r∞, where the
baryonic density is ρ∞, and the speed of sound a∞ (for polytropes).
For polytropes we also fix Γ. For equations of state of the form p = ke
it makes sense to fix e∞. We also fix m andΛ.

Ï We search for transonic solutions for which a = |ur/ut | at some radius
r ≡ r∗ (sonic point). They maximize accretion rate.



An example – solution for p = e/3. Define
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The solutions are given by

(ur)2 =
{

X3, r ≥ 3m,
X2, r < 3m,

(ur)2 =
{

X2, r ≥ 3m,
X3, r < 3m.

(5)

They are subsonic (supersonic) outside the sonic sphere, respectively. The
sonic sphere is located at r∗ = 3m, irrespectively ofΛ.
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Figure : Solutions obtained for equations of state p = ke, with k = 1/3,1/2,1,
Λ= 1/1000 and m = 1. Dotted vertical lines denote the locations of the horizons.
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Figure : Solutions obtained for equations of state p = ke, with k = 1/3,1/2,1,
Λ=−1/1000 and m = 1. The dotted vertical line denotes the location of the
horizon.
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Figure : Transonic solutions obtained for the polytropic equation of state with
Γ= 4/3, m = 1, r∞ = 106 and a2∞ = 2×10−4. The plot shows graphs of both a2 and
(ur/ut )2 for three different values of the cosmological constantΛr2∞ = 0,2×10−3

and 3×10−3.
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Figure : Same as in the previous figure, but forΛr2∞ = 0,−0.1 and −4.118.
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Figure : Solutions obtained for the polytropic equation of state with Γ= 4/3.
Different curves correspond to solutions with different polytropic (entropy)
constants K . The “homoclinic” solution (polytropic constant K0) is characterized
by the square of the speed of sound equal a2∞ = 1/100 at r∞ = 200. In this example
m = 1,Λ≈−0.3328.



Here we are mainly concerned with the efficiency of the accretion process.
There are at least two sensible measures of the mass accretion rate:
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and the baryonic mass accretion rate
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corresponding to the baryonic mass
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For isothermal equations of state p = ke with k = 1/3,1/2 and 1, both
accretion rates can be computed analytically. For p = e/3 we have
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Ï The gluing conditions of the Einstein–Straus vacuole impose
constraints on the total mass contained in the vacuole. It makes
sense to parametrize the solutions so that the total mass of the
accretion system is kept constant.

Ï We define the mass of the fluid as

mf = 4π
∫ r∞

rh

drr2e.

Ï One can show that for equations of state of the form p = ke the mass
of the fluid can be expressed as

mf = 4πe∞(r2
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∞|)1+k
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.

This gives the following formula for the mass accretion rate
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Ï An analogous result can be also obtained in the test-fluid polytropic
case. Expressions for Ḃ can be also found.
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Figure : Dependence of the accretion rate ṁ onΛ for systems with fixed mass mf .

We plot data corresponding to polytropic fluids with Γ= 4/3, m = 1, r∞ = 106 and
a2∞ = 2×10−4,2×10−3, and 2×10−2. The last graph depicts data obtained for the
equation of state p = e/3.
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Figure : Dependence of the accretion rate ṁ onΛ for system with fixed boundary
energy density e∞. Here all parameters are exactly the same as in the previous
figure.



Ï For positiveΛ the accretion rate decreases withΛ.
Ï For negativeΛ the situation is complex. The relation between the

accretion rate andΛ depends on the parametrization of solutions.
Ï Polytropic configurations with a fixed total mass exhibit a maximum of

ṁ for some negativeΛ. The accretion rate ṁ decreases withΛwhen the
boundary value of the density is kept fixed.

Ï For isothermal fluids ṁ is a decreasing function ofΛ in both
parametrizations. The exception is given by the ultra-hard equation of
state p = e, where the baryonic accretion rate has a maximum for some
negativeΛ.

Ï The behavior of test-fluid polytropes agrees with numerical results
obtained for self-gravitating polytropes by Karkowski and Malec
(2013).



Conclusions

Ï Global expansion can affect local structures through the
cosmological constant, even in the above extremely simple scenario

Ï In the lateΛ-dominated stages of the evolution of the Universe,
stationary accretion on black holes is probably very inefficient.

Ï Most interesting phenomena occur in theΛ< 0 sector. There exist
“homoclinic-type” solutions. Results concerning the relation
between accretion rates andΛ depend on the parametrization of
solutions.

Ï Not discussed here — stability. Linear stability against perturbations
satisfying the potential flow condition was proved in PM & E. Malec,
arXiv:1309.1546 (2013).


