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a puzzle for you




optical spectra from TDDF (perturbation) T
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E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)
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free oscillations
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optical spectra from TDDF (perturbation) T
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(w—=L)p (w) = [Vigr(w), p°]

aw) = Tr(di(w))

(d, (w=L)"" - [V (w), p°])
(u, (w— L)t v)
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the Lanczos connection

g(w) = (dol(w — H)™"|¢o)

J. Phys. C: Solid State Phys., Vol. 5, 1972, Printed in Great Britain. @ 1972

Electronic structure based on the local atomic

environment for tight-binding bands

R HAYDOCK, VOLKER HEINE and M J KELLY
Cavendish Laboratory, Cambridge, UK
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optical effects of intramolecular motion
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10 May 2010
A new version, v.4.2, of the Quantum

ESPRESSO distribution is available for

download.

12 April 2010
The final bugfix release, v.4.1.3, of the

Quantum ESPRESSO distribution is
available for download. This supersedes
all previous 4.1.x releases.

20 July 2009
The new release of the Quantum

ESPRESSO distribution is available for
download (version 4.1)

21 April 2009
The final bugfix release, v.4.0.5, of the

Quantum ESPRESSO distribution, is
available for download. This supersedes
all previous 4.0.x releases.

QUANTUMESPRESSO

HOME :: PROJECT :: WHAT CAN QE DO :: DOWNLOAD :: LEARN :: PSEUDO :: TOOLS ::
QE WIKI :: CONTACTS :: QUOTE ::

13 July 2010 A bugfix release, v.4.2.1, of the Quantum

ESPRESSO distribution is available for download.

Quantum ESPRESSO is an integrated suite of computer codes for electronic-
structure calculations and materials modeling at the nanoscale. It is based on
density-functional theory, plane waves, and pseudopotentials (both norm-conserving
and ultrasoft).

What | cannot compute, | do not understand [adapted from Richard P. Feynmar



WWwWWw.quantum-espresso.org


http://www.quantum-espresso.org
http://www.quantum-espresso.org
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QuantuM ESPRESSO: a modular and

open-source software project for quantum
simulations of materials

Paolo Giannozzi'?, Stefano Baroni'?, Nicola Bonini*,
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Sandro Scandolo''°, Gabriele Sclauzero'-’, Ari P Seitsonen’,
Alexander Smogunov'?, Paolo Umari' and

Renata M Wentzcovitch'%1°



the importance of being non local

a few, politically incorrect, thoughts on
Rydberg series, excitons,
functionals, and common sense



Rydberg series in rare-gas atoms

Argon
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Rydberg series in rare-gas solids

N5
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Reflectance (Arbitrary units)
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R. Haensel et al., PRL 23, 1160 (1969)
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common features of Rydberg and exciton states

B infinite series of hydrogen-like excitations
converging to the quasi-particle gap

B finite absorption intensity at the quasi-
particle gap



Rydberg and exciton states from common sense




Rydberg series from response calculations
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Rvdberg series from response calculations

(H° — €y)zy(r) + Y P / Ko (1, 1)z (r)dr’ = wz,(r)
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Rvdberg series from response calculations

(H° — €y)zy(r) + Y P / Ko (1, 1)z (r)dr’ = wz,(r)

K’UU’ (I’, I'/)

— 2006150 () (g + mxetenr)

TDHF | 2¢5(r)es (r')

(H® + Vo + Ve )a(r) = (w — leo])z(r)




Rydberg series from response calculations

(H° — €y)zy(r) + Y P / Ko (1, 1)z (r)dr’ = wz,(r)

Ky (v, 1)
o o [/ 1 | /
TDDFT 20, (T )y (1) P kxc(r,r’)
TDHF QQOO(I')QOO (I'/) 1 5(1‘ - I'/)/QOO(I'//)QOO (I'//) 1 dr//
v v r — /| - - r—r

(H® + V5 + Vo)) = (w = |e])2(r)

VATalr) = 265(0) [ nlr el )e)ar oo,

short range




particle-hole representation

( — €y Xcv_l_zwcv v = Xy
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o 0 1 o 0 o 0 1 o 0
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exciton series from response calculations

QOC/,U Zuc/v We /h I'—R)



exciton series from response calculations
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exciton series from response calculations

SOC/,U Zuc/v We /h I'—R)

(He(Re)—Hp(Rp)) X (RRp)+ Y W(RR4 R.R))X(RIR),) = wX (ReRy,)
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exciton series from response calculations

SOC/,U Zuc/v We /h I'—R)

(He(Re)—Hp(Rp)) X (RRp)+ Y W(RR4 R.R))X(RIR),) = wX (ReRy,)
R.R/,

W(ReRp, ReR},) = 2(we (Re)wn (R}, )[[wn (Rp)we (Re))
~ (we(Re)wn(R,)|lwe (RL)wn (Ry))
~ 2(we (R)wy, (R Jwy (R)we (R7))0(ReRp)6(Re Ry, )
/= (we(Re)uwn(Ray)|[we (Re)wn (Ri))6(RRE)S(RAR)

short-range, non-local eh interaction: N 1
itinerant Frenkel-like interaction R. — Ry

long-range, local eh interaction:

Wannier-like interaction
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atoms vs. insulators, TDDFT vs. TDHF

(H°(1) — H°(2)) X (12) +/W(12, 1’2" X (1'2")d1'd2" = wX (12)

atoms insulators

H°: short range H°: periodic
WH: short-range, repulsive WH: short-range, repulsive
W*C: long-range, attractive  |W*‘: long-range, attractive

Rydberg states bound by W*¢ [excitons bound by W*¢

H°: long range H°: periodic
WH: short-range, repulsive  |W": short-range, repulsive
WX*C: short-range, attractive |WX*‘: short-range, attractive

Rydberg states bound by H |excitons not bound
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conclusions

molecular Rydberg states and exciton series in insulators look the same
and originate both from the long-range eh attraction

in a response formalism, the long-range character of the eh interaction
stems from the linearization of the non-local (Fock) exchange interaction

the linearization of any local potential gives rise to a non-local, short-range
Interaction

in a “pure” TDDFT scheme, molecular Rydberg states arise from the
Coulomb tail of the ground-state exchange potential

no “pure”, adiabatic, TDDFT scheme can reproduce exciton series in
insulators

a consistent treatment of molecular Rydberg states and of excitons in
insulators necessarily requires either hybrid or non-adiabatic functionals
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and so what?

the success of density-functional theory is rooted much more in the Kohn-
Sham constructive ansatz than in the Hohenberg-Kohn existence theorem;

if the XC functional and variational equations resulting from the Kohn-Sham
ansatz could not be rationalized using concepts from classical electrostatics,
elementary quantum mechanics, and quasi-particle theory, the KS construct
would not be as useful (in fact it is much less so when dealing, e.g., with
Mott insulators, where those concepts poorly apply);

a useful ansatz for the reference KS system should lead to an XC functional
that we can rationalize and use using physical intuition;

for spectroscopic applications, a useful XC kernel should reflect the physics
of the eh interaction: this can only be obtained giving up a pure-density
dependence of the kernel, and singling out a non-local (Fock-like), possibly
screened, exchange interaction from the XC potential.
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