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Density-potential mapping

The development of new functionals in TDDFT requires more insight into
what the space-time non-localities in the time-dependent xc-potential
actually look like, both in theory and numerically.

We are therefore studying:

|) A mathematically explicit and precise construction of the density to
potential mapping
(M.Ruggenthaler, M.Penz)

2) Numerical solutions of exact time-dependent xc-potentials
(S.Nielsen, M.Ruggenthaler, M.Penz)



We here give a general outline of the proof.
Many technical points are discussed in detail on the poster:

Michael Ruggenthaler, RvL ‘Global fixed point proof for TDDFT’

and in the papers:

M.Ruggenthaler, RvL, Europhysics Lett. 95, 13001 (201 1)

Ruggenthaler, Penz, Bauer J.Phys.A. Math. Theor. 42,425207 (2009)
Penz, Ruggenthaler, ]. Phys.A. Math. Theor. 44, 335208 (201 1)



From potentials to densities

Hamiltonian N n

Ht)=T+V(#t)+W
Schrédinger equation
0T [v](t)) = H(t)[T[v](t)) U [o](to)) = [o)
Density

nlv(rt) = (Wlo|(t)|n(r)[¥v](t))

This maps from a certain domain of potentials to a certain domain
of densities



Local force equation

equations of motion for the density and current operators (RG 1984)
on(rt) = =V - j(rt)
0j(xt) = (W ()] |j(r), HO)| V(1) <G= local force

Combination of both then gives

=V - (n([v], xt)Vo(rt)) = q([v], xt) — 9 n([v],rt)

wnere

A
.

(o], xt) = =iV - (w(B)] [j(x), T+ W | [9(0))



Let us now replace n([v],rt) by a given density n(rt) subject to the conditions

n(rtg) = (Wo|A(r)| o) Opn(rto) = —(Wo|V - j(r)|¥o)

This is a nonlinear equation for v(rt)

—V - (n(xt)Vou(rt)) = q([v], rt) — 07n(rt)

If we propagate the TDSE with the solution v(rt) also have
=V - (n([v],xt)V(rt)) = q([v], rt) — Ofn([v], rt)

Subtracting both equations we have

i p(r,t) — V- (p(rt)Vo(rt)) p(rt) = n([v],rt) — n(rt)

with initial conditions

p(rtg) =0 Oip(rty) =0



The unique solution satisfying the initial conditions is ,O(I't) =0
n(rt) = n([v],rt)

If we now choose

n(rt) = ny(|lu, ®ol, rt)

to be the density obtained from the TDSE in a system with different
interactions W’ , external potential u(rt) and a different initial state @,
then the existence of a solution to

—V - (n(rt)Vo(rt)) = q([v],rt) — 07n(rt)

implies - .
P |) v-representability of n(rt) in our system

2) uniqueness for W=W’ and ®g = Vg implies the
Runge-Gross theorem



The main question therefore is:

Does a solution to

—V - (n(rt)Vo(rt)) = q([v],rt) — 07n(rt)

for v(rt) exist and is it unique ?

This can indeed be established when v(rt) and n(rt) can be expanded in

a Taylor series around the initial time to . However, there are indications that
it is valid more generally. For instance, RG can be established without this
assumption for

|) Linear response from the ground state (Laplace transformable v(rt))
2) External fields of dipole form (Ruggenthaler et al., PRA (2010))
3) Lattice systems (Tokatly, PRB 83,035127 (201 1))

This suggests the possibility of a more general proof



Moreover there are examples of time-analytic potentials leading to non-time
-analytic densities. (Maitra, Todorov,VWWoodward,Burke, PRA8I, 042525 (2010))

It is therefore also desirable to find a proof that avoids the Taylor-expansion.

General idea:

Rather than Taylor-expanding we consider a finite time-interval
[to, T] on which we find a global convergence scheme.
We then need to prove its convergence and uniqueness

(in the same spirit as the solution of the TDOEP equations
by Wijewardane and Ullrich, PRL100, 056404 (2008))

M.Ruggenthaler, RvL,
Europhysics Lett. 95, 13001 (2011)



From time-propagation we have

=V.P
P : vy — qlvg] QT
We then solve a T
Vv,

—V - (n(rt)Vui(rt)) = q([vo], rt) — 2n(rt)

for vi(rt). This yields a mapping V .q[VO]

V . q[?)()] — U1

The combined mapping f[U()] — (V o 7?) [UO] = V1

maps potentials to potentials



Whenever we have

F=V.-P
Flv] =wv Q‘.V P

then we are solving

—V - (n(rt)Vo(rt)) = q([v],rt) — O2n(rt) vV alv,]

The question whether a solution to this equation exists and is unique is thus
equivalent to the question whether a unique fixed point of the mapping F exists.

The main existence and uniqueness question of TDDFT is in this way
reformulated as a fixed point question



What we will show is the following :

| Flv1] = Flvol|le < allvr — volla a <1

for some parameter-dependent norm on the space of potentials.
This follows from the two inequalities

C
lglvi] = qlvollla = —=llvr = volla

|Flo1] = Flvo]lla < DHCI[M] = qlvo]|a

where

and we can choose +/a > CD



Outline of the proof

From Lo
Olv1] — Ofug] = / x o0 + €01 = 0)]|e-

with O =4d(r) we have

q(lvi], rt) — q([vol, rt) = /t dt’/er’x(rt,r’t’)(vl(r’t') — vp(r't"))

1
et rt) = —i / N [d, (rt), Avp, (') Wo) R
0

Nonequilibrium response

N e . : function
where [, is the hamiltonian with potential

vy = vg + A(v1 — vg)



For a general integral equation of the form

t
f(rt):/ dt’/dr’x(rt,r’t’)g(r’t/)
to Q2
we have

FOI2 < 20 / at'g(')] 2

to

where

£ = /Q dr f(rt)’

> I(xg)(®)]|?
C — su
=5 T v g



Then it is readily shown that:

I flla <

where

IF12 = sup (|If(8)[2ee¢=")

te(to,T]

C? = sup C*t)

tE[tQ,T]

Applying this to our case gives

“ gl
\/— (@7

N

X-norm, where  can be
chosen freely

lqlv1] — qlvol]la <

50

|v1 — voa




Let us now consider the second inequality

|Flo1] = Fluollla < Dllgv] = gqlvo]lla

If we define  v1 = Flvo] and v2 = Flv1] then

=V - [n(rt)V(va(rt) —vi(rt))] = q([va],rt) — q([vo], r?)

This is an equation of the Sturm-Liouville form

Qu(rt) = ¢(rt)
Q= =V -[n(rt)V]

The mathematical properties of this equation have been studied rigorously
in  Ruggenthaler, Penz, Bauer J.Phys.A. Math. Theor. 42,425207 (2009)
Penz, Ruggenthaler, J. Phys.A. Math. Theor. 44, 335208 (201 1)



Since

(vo|Qu1) — (Quplvy) = / dS - n(rt) (vi(rt)Voug(rt) — vo(rt) Vo (rt))

oS

the Sturm-Liouville operator is self-adjoint whenever either the density or
the potential vanishes at the boundaries. In that case there is an orthonormal
eigenbasis

Qoi(rt) = X\i(t);(rt)

where

A(t) = (61 Qer) = /Q dr n(rt)| Vi (xt)|? > 0

and the only zero eigenvalue corresponds to the constant function

do(rt) = c(t) 0= X(t) < Ai(t) < Ao(t) < ...



Expanding
(v1 — v2)( Zuz (t) s (rt)

(1] — alvo]) ZQ )i (rt)
we have
2 _ —  Gi(D) 2 R — |
o (£) = va(t)] —; WOLE A1<t>2§'<@(t>
! 2
— v1 () — qlvg] (T
It follows that A1 (t)? lalv1](2) = glvo] (@)

|Flv1] = Flolla = llvz = villa < Dllglv1] = qlvo]lla

1
D? = sup
telto,T] A1 (t)2

as we wanted to prove




Consequences

|Flu] = Flollla < allu —vl|q =

Suppose now that there are 2 fixed points
Flu) = u Flo] =

then choosing v/a = 2CD we find

1
lu = vlla = | Flu] = Flollla < Sllu —vla

and therefore

lu=vla =0 == wu=w

This amounts to the RG theorem: There is a unique potential producing
a given density for a given initial state



We established uniqueness, but what about existence (v-representability) ?

If  Csup =supCluv, Flv]] exists then by choosing \/a > CsupD we have

CsupD
k sup
|Vk41 — Vklla < a”|lvr — o] a=—7

k
v = F v
We have a Cauchy sequence in a complete space and therefore
UV — U

Existence therefore requires a condition on the operator norm of
the response function



Summary of mathematical details

The potentials that we consider are in LQ(Q) which for example
includes the Coulomb potential

The local forces that we consider are in the dual to a certain weighted
Sobolev space H&(Q, n)



Numerical example

Particle on a ring of circumference |.
We apply a potential

v(z,t) = sin(nz) sin(wt)

with initial state

1

Uo(z) = A(e =D + 1) re |—1,1]

| <«fmmmm fina| density
< nitial density
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900 iterations Then we feed the density n(x,t) in
the fixed point procedure and
recover the potential v(x,t)
(red one in the picture)

Al 600 iterations We start from the
initial guess v(x,t)=0

The potential converges nicely
to the exact v(x,t)

Exact v(x,t) (snapshots)




Further numerics

In collaboration with Seren Nielsen, Jeppe Olsen from Arhus, Denmark

We are presently investigate the dynamics of xc-potentials for
2-particle systems (soft-Coulomb) with various initial states
to study:

- Memory effects in the xc-potential

- Initial state dependence
(e.g. correlated initial states in the KS system)

- Quantum control of interacting system
(find v(x,t) for prescribed n(x,t))



Conclusions

- The existence and uniqueness question of TDDFT are reformulated
as a fixed point problem

- The Taylor expansion in time-derivatives is avoided.
Instead we demand the existence of the operator norm of a
certain response function

- The Volterra structure of the response function is exploited
by use of the X-norm

- Numerical work (Seren Nielsen, Michael Ruggenthaler) on |-d
correlated systems has already shown that the fixed point scheme converges
very well (work in progress)






Now we can do the following trick

t
O < C2t) / dt! (0 10) =l ~t0) | g (17) |2

to

t
< C%(t) sup [lg(t)|e 1) / dt/ e’ ~to)
t

t'elto,t]

and find - ¢

o C?(t ol
o) ) < W sup ettt )2
t’'elto,t]




