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Coupling between electronic and nuclear motion:

Situations where the electronic and the nuclear motions are
strongly coupled and the quantum features of the nuclear motion
become substantial:

molecules in strong laser pulses

light “nuclei”; muon, positron, ...

electron-phonon interaction

branching ratio of the chemical reactions at the conical
intersection
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System

Ne electrons, (r1...rNe) ≡ r

Nn nuclei, (R1...RNn
) ≡ R, masses M1...MNn and charges Z1...ZNn

Ĥ = ĤBO
R + V̂ e

ext(r, t) + T̂n(R) + V̂ n
ext(R, t)

ĤBO
R

is the traditional Born-Oppenheimer electronic Hamiltonian,

ĤBO
R = T̂e(r) + Ŵee(r) + V̂en(r,R) + Ŵnn(R)

Time-dependent schrödinger equation

ĤΨ(r,R) = i∂tΨ(r,R)
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exact numerical solution

provides the complete information on the system

only for very small systems like H+
2

lacks the intuitive picture that potential energy surfaces can
provide

approximate methods: nuclear wavepacket dynamics on BO
surfaces, Ehrenfest dynamics of nuclei, surface hopping (Tully)

applicable to larger systems

based on potential energy surfaces picture or forces acting on
nuclei

approximations are introduced in early stages → mean-field or
non-correlated → don’t work in many situations
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Born-Oppenheimer approximation

Solve
ĤBO

R ΦBO
R (r) = ǫBO(R)ΦBO

R (r)

for each fixed nuclear configuration , R.

Approximate the full electron-nuclear wave function:

ΨBO(r,R) = ΦBO
R (r)χBO(R)

Nuclear equation:
(

∑Nn

ν=1
1

2Mν
(−i∇ν +Aν)

2+

Ŵnn(R)+ V̂ ext
n (R)+ ǫBO(R)

)

χBO(R) = EχBO(R)
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Vector potential

A
BO

ν (R) =

∫

Φ
BO∗
R (r)(−i∇ν)Φ

BO

R (r) dr

geometrical phase

γBO(C) =

∮

C

A
BO

ν (R) · dR

Question: Is the appearance of Berry phases a consequence of the
Born-Oppenheimer approximation or does it survive in the exact
treatment?
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Born-Oppenheimer expansion

Expand full electron-nuclear wave function in complete set of BO
states:

Ψ(r,R, t) =
∑

j

ΦBO
R,j(r)χj(R, t)

Insert the expansion in the full time-dependent Schödinger
equation→standard non-adiabatic coupling terms from T̂n acting
on ΦBO

R,j .

Numerically very hard:

Need many-electron BO wavefunction
Non-adiabatic coupling terms become infinitely large in the
vicinity of conical intersections

χj(R, t) looses nice interpretation as “nuclear wavefunction”
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Goal: show that Ψ(r,R, t) = ΦR(r, t)χ(R, t) can be made Exact

Concept of Exact time-dependent potential energy surface

Concept of Exact time-dependent vector potential

G. Hunter, Int. J. Quantum Chem. 9, 237 (1975)

Nikitas I. Gidopoulos, E. K. U. Gross, arXiv:cond-mat/0502433
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Theorem

(a)The exact solution of

ĤΨ(r,R, t) = i∂tΨ(r,R, t)

can be written as a single product

Ψ(r,R, t) = ΦR(r, t)χ(R, t)

where ΦR(r, t) satisfies the partial normalization condition

∫

dr|ΦR(r, t)|2 = 1

for each fixed R, at any time t.

A. A., N.T. Maitra, E.K.U. Gross, Phys. Rev. Lett. 105, 123002 (2010)
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Immediate Consequences:

1− The diagonal Γ(R, t) of the nuclear Nn − body density matrix
is identical with |χ(R, t)|2

proof: Γ(R, t) =
∫

dr|Ψ(r,R, t)|2 =
∫

dr|ΦR(r, t)|2|χ(R, t)|2 =

|χ(R, t)|2

2− ΦR(r, t) and χ(R, t) are unique up to within the gauge
transformation :

Φ̃R(r, t) := eiθ(R,t)ΦR(r, t)

χ̃(R, t) := e−iθ(R,t)χ(r, t)
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Immediate Consequences:

proof: Let ΦR · χ and Φ̃R · χ̃ be two different representations of an
exact wave function Ψ(r,R, t)

Ψ(r,R, t) = ΦR(r, t)χ(R, t) = Φ̃R(r, t)χ̃(R, t)

→ χ
χ̃
=

Φ̃R

ΦR
:= g(R, t) → |Φ̃R(r, t)|2 = |g(R, t)|2|ΦR(r, t)|2

∫

dr|Φ̃R(r, t)|2 = |g(R, t)|2
∫

dr|ΦR(r, t)|2

→ |g(R, t)|2 = 1 → g(R, t) = eiθ(R,t)

→ Φ̃R(r, t) = eiθ(R,t)ΦR(r, t) χ̃(R, t) = e−iθ(R,t)χ(R, t)
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Proof of part (a):

Given the exact electron-nuclear wavefunction Ψ(r,R, t)

Choose χ(R, t) := eiS(R,t)
√

∫

dr|Ψ(r,R, t)|2

with some real-valued function S(R, t)

ΦR(r, t) := Ψ(r,R, t)/χ(R, t)

Then, by construction,
∫

dr|ΦR(r, t)|2 = 1
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Equations

(b) The wavefunctions ΦR(r, t) and χ(R, t) satisfy:

(1) electronic equation
(

ĤBO
R

+ V̂ e
ext(r, t)+ Û coup

en [χ,ΦR]− ǫ(R, t)
)

ΦR(r, t) = i∂tΦR(r, t)

(2) nuclear equation
(

∑Nn
ν=1

1
2Mν

(−i∇ν +Aν(R, t))2 + V̂ n
ext(R, t)+

ǫ(R, t)
)

χ(R, t) = i∂tχ(R, t)
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EXACT time-dependent potential energy surface

ǫ(R, t) =
∫

drΦ∗
R
(r, t)

[

HBO
R

+V̂ e
ext(t)+

∑Nn

ν=1
(−i∇ν−Aν)

2

2Mν
−i∂t

]

Φ∗
R
(r, t)

EXACT time-dependent vector potential

Aν(R, t) =
∫

Φ
∗
R
(r, t)(−i∇ν)ΦR(r, t)dr

EXACT electron-nuclear correlation operator

Û coup
en [χ,ΦR] =

∑Nn

ν=1
1

Mν

[

(−i∇ν−Aν)
2

2 +
(

−i∇νχ
χ +Aν

)

(−i∇ν −Aν)
]

Ali Abedi Exact factorization of the time-dependent electron-nuclear wavefunction



Observations

Electronic equation is nonlinear in ΦR(r, t) and contains χ(R, t)

There is an alternative, equally exact, representation

Ψ = Φr(R, t)χ(r, t) (electrons move on the nuclear energy surface)

Both equations are form-invariant under the gauge transformation

ΦR(r, t) → Φ̃R(r, t) = eiθ(R,t)ΦR(r, t)

χ(R, t) → χ̃(R, t) = e−iθ(R,t)χ(R, t)

Aν(R, t) → Ãν(R, t) = Aν(R, t) +∇νθ(R, t)

ǫ(R, t) → ǫ̃(R, t) = ǫ(R, t) + ∂tθ(R, t)
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Basic idea of the proof part (b)

first step: we apply Frenkel’s stationary action principle,
δ
∫ t1
t0

dt〈Ψ|Ĥ − i∂t|Ψ〉 = 0 , to the product wavefunction and
require the action to be stationary with respect to variations in
ΦR(r, t) and χ(R, t), subject to the normalization condition

δ
δΦR

∗(r)

( ∫ t1
t0

dt〈Ψ|Ĥ−i∂t|Ψ〉

〈Φχ|Φχ〉

)

= 0

δ
δχ∗(R)

( ∫ t1
t0

dt〈Ψ|Ĥ−i∂t|Ψ〉

〈Φχ|Φχ〉

)

= 0

second step: prove the implication:
Φ, χ satisfy Eqs.1, 2 =⇒ Ψ := Φχ satisfies ĤΨ = i∂tΨ.

Ali Abedi Exact factorization of the time-dependent electron-nuclear wavefunction



ǫ(R, t), Aν(R, t) and Û coup
en [χ,ΦR] mediate the coupling

between the nuclear and the electronic degrees of freedom in
a formally exact way

Vector potential appears in the exact treatment.

Does it produce a real effect or can it be made disappear by
a suitable gauge transformation?
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Vector potential as the difference of paramagnetic nuclear velocity
fields derived from the full and nuclear wavefunctions:

Aν(R, t) =
Im 〈Ψ(t)| ∇νΨ(t)〉

r

|χ(R, t)|2 − Im(χ∗∇νχ)

|χ(R, t)|2

Im(χ∗∇νχ) + |χ|2Aν → reproduce the exact nuclear current
density.

χ(R, t) → proper nuclear many-body wavefunction:

Its absolute-value squared gives the exact nuclear (N -body)
density

Its phase yields the correct nuclear (N -body) current density.
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Time-Dependent Potential Energy Surfaces
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Example: 1D −H
+
2 in strong laser field

1D-model (soft Coulomb potentials)

Ĥ(t) = − 1
M

∂2

∂R2 − 1
2µe

∂2

∂z2
− 1

√

1+(z−R/2)2
−

1
√

1+(z+R/2)2
+ 1

√

0.03+R2
+ V̂laser(z, t)

H+
2 molecular ion exposed to λ = 228 nm laser field

E(t) = E0f(t) sin(ωt),for two peak intensities,

I1 = |E0|
2 = 1014W/cm2 (dashed) and

I2 = |E0|
2 = 2.5 × 1013W/cm2 (solid)

f(t) is chosen such that the field is linearly ramped
from zero to its maximum strength at t = 7.6 fs and
thereafter held constant
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Example: 1D −H
+
2 in strong laser field

exact solution of i∂tΨ(r,R, t) = ĤΨ(r,R, t)

Compared with:

Hartree approximation (TDSCF): ΨH(r,R, t) = χ(R, t)φ(r, t)

Standard Ehrenfest dynamics

“Exact Ehrenfest dynamics” where the forces on nuclei are
calculated from the exact TDPES
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Results: I1 = 10
14W/cm2

Snapshots of the TDPES (blue lines) and nuclear density (black) at times indicated. The circles indicate the
position and energy of the classical particle in the exact-Ehrenfest calculation. For reference, the ground-state BO
surface is shown as the thin red line.
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Results: I1 = 10
14W/cm2

The internuclear separation 〈R〉(t)
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Results: I2 = 2.5× 10
13

Snapshots of the TDPES (blue lines) and nuclear density (black) at times indicated. The circles indicate the
position and energy of the classical particle in the exact-Ehrenfest calculation. For reference, the ground-state BO
surface is shown as the thin red line.
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Results: I2 = 2.5× 10
13

The internuclear separation 〈R〉(t)
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Model (S. Shin and H. Metiu, JCP 102 1995)

L

0

R
x

fixed ion
fixed ion

ion
electron

Ĥ(x,R) = − 1
2

∂2

∂x2 − 1
2M

∂2

∂R2 + 1
|L/2−R| +

1
|L/2+R| −

erf(|R−x|/Rf )
|R−x| − erf(|x−L/2|/Rc1)

|x−L/2| − erf(|x+L/2|/Rc2)
|x+L/2|

Nuclei (1) and (2) are heavy: their positions are fixed
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Time-Dependent potential energy surfaces
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Time-Dependent potential energy surfaces
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Time-Dependent potential energy surfaces
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Time-Dependent potential energy surfaces
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Analysis of the step

Ψ(r, R, t) = χ1(R, t)φ
(1)
R (r) + χ2(R, t)φ

(2)
R (r)

ΦR(r, t) = F1(R, t)φ
(1)
R (r) + F2(R, t)φ

(2)
R (r)

where Fk(R, t) = eiθχk(R,t)√
|χ1(R,t)|2+|χ2(R,t)|2

ǫ(R, t) = |F1|2
(

ǫ
(1)
BO + γ̇1

)

+ |F2|2
(

ǫ
(2)
BO + γ̇2

)

at R0 , the cross-over of |χ1| and |χ2|, where |χ1(R0, t)| = |χ2(R0, t)| = |X(t)|, regardless of |X(t)|’s

value, |F1|
2 and |F2|

2 are always |F1(R0, t)|
2 = |F2(R0, t)|

2 = 1/2, R0 being the center of the region

where steps form

∆R =
2

α

α(t) =
(∇R |χ1(R, t)|)R0

− (∇R |χ2(R, t)|)R0

|X(t)|
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Analysis of the step
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Summary
We have shown Ψ(r,R, t) = ΦR(r, t) · χ(R, t) is an exact
representation of the complete electron-nuclear wavefunction
if ΦR(r, t) and χ(R, t) satisfy the right equations

Proper definition of the of Exact time-dependent potential
energy surfaces

Proper definition of the of Exact time-dependent vector
potential

We have shown that the TDPES is a useful tool to interpret
different dissociation mechanisms

We have investigated the structure of the TDPES in the
presence of strong non-adiabatic coupling (avoided-crossing)

Ali Abedi Exact factorization of the time-dependent electron-nuclear wavefunction



THANKS!

Ali Abedi Exact factorization of the time-dependent electron-nuclear wavefunction



Equations

electronic equation
(

ĤBO
R

+ V̂ e
ext(r, t) + Û coup

en − ǫ(R, t)
)

ΦR(r, t) = i∂tΦR(r, t)

nuclear equation
(

∑Nn

ν=1
1

2Mν
(−i∇ν +Aν)

2 + V̂ n
ext(R, t) + ǫ(R, t)

)

χ(R, t) = i∂tχ(R, t)

gauge transformation

ΦR(r, t) → Φ̃R(r, t) = eiθ(R,t)ΦR(r, t)

χ(R, t) → χ̃(R, t) = e−iθ(R,t)χ(R, t)

Aν(R, t) → Ãν(R, t) = Aν(R, t) +∇νθ(R, t)
ǫ(R, t) → ǫ̃(R, t) = ǫ(R, t) + ∂tθ(R, t)

Ali Abedi Exact factorization of the time-dependent electron-nuclear wavefunction



Static limit

Ψ(r,R, t) = e−iEtΦR(r)χ(R) = [e−iǫ(R)tΦR(r)][e−i(E−ǫ(R))tχ(R)]

Electronic equation:

(

ĤBO
R

+ Û coup
en

)

ΦR(r) = ǫ(R)ΦR(r)

Nuclear equation:
(

∑Nn

ν=1
1

2Mν
(−i∇ν +Aν)

2 + V̂
ext
n

(R) + ǫ(R)
)

χ(R) = Eχ(R)

ǫ(R) =< ΦR|ĤBO
R

+
∑Nn

ν=1
(−i∇ν−Aν)

2

2Mν
|ΦR >e

exact potential energy surface is gauge invariant

neglecting the 1/Mν terms in the electronic equation leads to the
BO electronic equation and potential energy surfaces

The static decomposition was shown first by Hunter (G. Hunter, Int. J. Quantum Chem. 9, 237 (1975))
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Vector potential

Aν(R, t) =
Im〈Ψ|∇νΨ〉

r

|χ(R,t)|2 −∇νS(R)

where χ(R) := eiS(R)|χ(R)|

For a non current carrying molecular ground state

Aν(R) = −∇νS(R)
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Model (Horia metiu)

+ +

-5 Å +5 Å

+

– –

(1) (2)

Nuclei (1) and (2) are heavy: their positions are fixed
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Adiabatic potential energy surfaces
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Exact potential energy surfaces
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