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Historical remark

Original Bethe-Salpeter equation

In a seminal paper [Phys. Rev. 84, 1232 (1951)] Bethe and Salpeter
derived an equation describing propagation of two interacting
relativistic particles.

The physical motivation was the problem of deuteron – a bound state
of two neucleons (proton and neutron in the nucleus of deuterium.)

Why this equation is so important in the theory of optical spectra?
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Optical absorption: Experiment and Phenomenology

Light is absorbed: I = I0e−α(ω)x

Classical electrodynamics

E = E0e−i(ωt−qx), q2 =
ω2

c2 εM(ω)

εM(ω) = ε′M(ω) + iε′′M(ω)

q ≈ ω
c

√
ε′M + i ω

2c
√
ε′M
ε′′M√

ε′M = nr – index of refraction

I ∼ |E |2 = |E0|2e−α(ω)x

α(ω) = ω
cnr
ε′′M(ω)

ε′′M(ω) ∼ absorption rateExp. at 30 K from: P. Lautenschlager et al.,

Phys. Rev. B 36, 4821 (1987).
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Optical absorption: Microscopic picture

Elementary process of absorption: Photon creates a single e-h pair

Representation by Feynman diagrams:

photon creates an e-h pair
the pair propagates freely
it recombines and recreates a photon

Absorption rate is given by an imaginary part of the polarization loop

W =
2π
~

∑
i,j

|〈ϕi |e · v̂|ϕj〉|2δ(εj − εi − ~ω) ∼ Imε(ω)
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Absorption by independent Kohn-Sham particles

Independent transitions:

ε′′(ω) =
8π2

ω2

∑
ij

|〈ϕj |e·v̂|ϕi〉|2δ(εj−εi−ω)
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Absorption by independent Kohn-Sham particles

Independent transitions:

ε′′(ω) =
8π2

ω2

∑
ij

|〈ϕj |e·v̂|ϕi〉|2δ(εj−εi−ω)

Particles are interacting!



bg=whiteIntroduction BSE Response In practice

Interaction effects: self-energy corrections

1st class of interaction corrections:

Created electron and hole interact with other particles in the system,
but do not touch each other
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Interaction effects: self-energy corrections

1st class of interaction corrections:

Created electron and hole interact with other particles in the system,
but do not touch each other

Absorption by “dressed” particles

= +

Bare propagator G0 is replaced by the full propagator G = G0 + G0ΣG

[ω − H0(r)]G(r, r′, ω) +

∫
dr1Σ(r, r1, ω)G(r1, r′, ω) = δ(r− r′)
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Self-energy corrections

Perturbative GW corrections

H0(r)ϕi (r) + Vxc(r)ϕi (r) = εiϕi (r)

H0(r)φi (r) +

∫
dr′ Σ(r, r′, ω = Ei ) φi (r′) = Ei φi (r)

First-order perturbative corrections with Σ = GW :

Ei − εi = 〈ϕi |Σ− Vxc |ϕi〉

Hybersten and Louie, PRB 34 (1986);
Godby, Schlüter and Sham, PRB 37 (1988)
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Optical absorption: Independent quasiparticles

Independent transitions:

ε′′(ω) =
8π2

ω2

∑
ij

|〈ϕj |e·v̂|ϕi〉|2δ(Ej−Ei−ω)
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2nd class of interaction corrections:

includes all direct and indirect interactions between electron and hole
created by a photon
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includes all direct and indirect interactions between electron and hole
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Summing up all such interaction processes we get:

Empty polarization loop is replaced by the full two-particle propagator
L(r1t1; r2t2; r3t3; r4t4) = L(1234) with joined ends
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Interaction effects: vertex (excitonic) corrections

2nd class of interaction corrections:

includes all direct and indirect interactions between electron and hole
created by a photon

Summing up all such interaction processes we get:

Empty polarization loop is replaced by the full two-particle propagator
L(r1t1; r2t2; r3t3; r4t4) = L(1234) with joined ends

Equation for L(1234) is the Bethe-Salpeter equation!
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Derivation of the Bethe-Salpeter equation (1)

Propagator of e-h pair in a many-body system:

Solid lines stand for bare one-particle Green’s functions

G0(12) = G0(r1, r2, t1 − t2)

Wiggled lines correspond to the interaction (Coulomb) potential

v(12) = v(r1 − r2)δ(t1 − t2) =
e2

|r1 − r2|
δ(t1 − t2)

Integration over space-time coordinates of all intermediate points
in each graph is assumed
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Derivation of the Bethe-Salpeter equation (1)

Propagator of e-h pair in a many-body system:

1st step: Dressing one-particle propagators

Self-energy Σ is a sum of all 1-particle irreducible diagrams

Full 1-particle Green’s function satisfies the Dyson equation

= +
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Derivation of the Bethe-Salpeter equation (2)

Propagation of dressed interacting electron and hole:

2nd step: Classification of scattering processes

At this stage we identify two-particle irreducible blocks

where γ(1234) of the electron-hole stattering amplitude
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Derivation of the Bethe-Salpeter equation (3)

Final step: Summation of a geometric series

The result is the Bethe-Salpeter equation
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Derivation of the Bethe-Salpeter equation (3)

Final step: Summation of a geometric series

The result is the Bethe-Salpeter equation

Analytic form of the Bethe-Salpeter equation (j = {rj , tj})

L(1234) = L0(1234)+∫
L0(1256)[v(57)δ(56)δ(78)− γ(5678)]L(7834)d5d6d7d8
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Closed set of equations in a diagrammatic form

1-particle Green’s function G(12) satisfies the Dyson equation

= +

Σ(12) is a sum of all 1-particle irreducible diagrams

γ(1234) – sum of all e-h and interaction irreducible diagrams
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Response to external potential

V ext 7−→ nind 7−→ V ind (r) =

∫
dr′v(r− r′)nind (r′) = vnind

Total field acting on particles in the system : V tot = V ext + V ind

Linear response theory: Definition of the dielectric function

nind (1) =

∫
d2χ(12)V ext (2) 7−→ V tot = (1 + vχ)V ext ≡ ε−1V ext

The density response function χ(12) is related to the e-h propagator L

χ(12) = χ(r1, r2, t1 − t2) = L(1122) = L(r1r1r2r2, t1 − t2)
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Macroscopic response in solids
Optical absorption is determined by ImεM(ω). How we calculate it?

V ext (r, t) = V ext (q)e−i(ωt−qr) , q � G

In a periodic system V ind contains all components with k = q + G

V ind (r, t) = e−iωt
∑

G

V ind
G (q)ei(q+G)r

Fourier component of the total potential in a solid:

V tot
G (q) = δG,0V ext (q) + V ind

G (q) = [δG,0 + vG(q)χG,0(q, ω)] V ext (q)

Macroscopic field and macroscopic dielectric function

Macroscopic (averaged) potential: V tot
M (q) = V tot

G=0(q)

Macroscopic dielectric function: V ext (q) = εM(q, ω)V tot
M (q)

εM(q, ω) =
1

1 + vG=0(q)χ0,0(q, ω)
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Macroscopic dielectric function from BSE (1)

1st possibility:

Calculate L(1234) by solving the Bethe-Salpeter equation

L = L0 + L0(v − γ)L

Join electron-hole ends and perform a Fourier transform in time

L(1122) = L(r1r1r2r2, t1 − t2) 7→ L(r1r1r2r2, ω) = χ(r1, r2, ω)

Go to the momentum representation

χG,G′(q, ω) =

∫
dr1dr2ei(q+G)r1L(r1r1r2r2, ω)e−i(q+G′)r2

The “head” of χG,G′ (element with G = G′ = 0) determines εM
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Macroscopic dielectric function from BSE (1)

1st possibility:

Calculate L(1234) by solving the Bethe-Salpeter equation

L = L0 + L0(v − γ)L

Join electron-hole ends and perform a Fourier transform in time

L(1122) = L(r1r1r2r2, t1 − t2) 7→ L(r1r1r2r2, ω) = χ(r1, r2, ω)

Go to the momentum representation

χG,G′(q, ω) =

∫
dr1dr2ei(q+G)r1L(r1r1r2r2, ω)e−i(q+G′)r2

The “head” of χG,G′ (element with G = G′ = 0) determines εM

Macroscopic dielectric function and the absorption rate

εM(q, ω) =
1

1 + vG=0(q)χ0,0(q, ω)
; Abs(ω) = lim

q→0
ε′′M(q, ω)
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Macroscopic dielectric function from BSE (2)

2nd possibility:

Define a “long-range part” v0 of the interaction potential

vG(q) = vG=0(q)δG,0 + v̄G(q)

v(r) =

∫
BZ

dq
∑

G

ei(q+G)rvG(q) = v0(r) + v̄(r)

Bethe-Salpeter equation for a “proper” e-h propagator L̄(1234)
(replace v 7→ v̄ in the full BSE)

L̄ = L0 + L0(v̄ − γ)L̄

The full L-function and the density response function χG,G′(q, ω)

L = L̄ + L̄v0L ⇒ χ = χ̄+ χ̄v0χ
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Macroscopic dielectric function from BSE (2)

L = L̄ + L̄v0L ⇒ χ(12) = χ̄(12) + χ̄(13)v0(34)χ(42)

In the momentum representation v0 7→ vG=0(q)δG,0

χG,G′ = χ̄G,G′+χ̄G,0vG=0χ0,G′ ⇒ χ0,0(q, ω) =
χ̄0,0(q, ω)

1− vG=0(q)χ̄0,0(q, ω)

Macroscopic dielectric function in terms of proper polarizability

εM(q, ω) =
1

1 + vG=0(q)χ0,0(q, ω)
= 1− vG=0(q)χ̄0,0(q, ω)

χ̄0,0(q, ω) =

∫
dr1dr2eiq(r1−r2)L̄(r1r1r2r2, ω)
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Macroscopic dielectric function from BSE (2)

Optical response from the Bethe-Salpeter equation

Solve the reduced Bethe-Salpeter equation for L̄(1234)

L̄ = L0 + L0(v̄ − γ)L̄

Calculate the macroscopic dielectric function from L̄(1122)

εM(q, ω) = 1− vG=0(q)

∫
dr1dr2eiq(r1−r2)L̄(r1r1r2r2, ω)

Calculate the absorption rate from the imaginary part of εM(q, ω)

Abs(ω) = lim
q→0

ε′′M(q, ω)

By setting v̄ = 0 we neglect local field effects – the difference
between the macroscopic field V tot

M (r) and the actual field V tot (r)
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The Bethe-Salpeter equation: Approximations

Reminder

BSE determines 2-particle propagator L(1234), provided 1-particle
self-energy Σ(12) and e-h scattering amplitude γ(1234) are given.

Standard approximations:

Appriximating Σ by GW diagram: Σ(12) = G(12)W (12)

=
= +

Approximating γ by W : γ(1234) = W (12)δ(13)δ(24)
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The Bethe-Salpeter equation: Approximations

Approximate Bethe-Salpeter equation

Analytic form of the approximate Bethe-Salpeter equation

L(1234) = L0(1234) +

∫
L0(1256)[v(57)δ(56)δ(78)−

W (56)δ(57)δ(68)]L(7834)d5d6d7d8

L0(1234) = G(12)G(43) and W (12) come out of the GW calculations
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The Bethe-Salpeter equation: Approximations

Oversimplified approximations – RPA and TDHF

– Random phase approximation (RPA): W (12) = 0

No e-h correlations – excitonic effects are completely missing!
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The Bethe-Salpeter equation: Approximations

Oversimplified approximations – RPA and TDHF

– Random phase approximation (RPA): W (12) = 0

No e-h correlations – excitonic effects are completely missing!

– Time-dependent Hartree-Fock: W (12) = v(r1 − r2)δ(t1 − t2)

Too strong excitonic effects – screening is missing!
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The Bethe-Salpeter equation: Approximations

Reduced BSE for the proper e-h propagator

L(1234) = L0(1234) +

∫
d5d6d7d8L0(1256)×

× [v(57)δ(56)δ(78)−W (56)δ(57)δ(68)]L(7834)

Further simplifications: Static W

Assumption of the static screening:

W (r1, r2, t1 − t2)⇒W (r1, r2)δ(t1 − t2)

L̄(1234)⇒ L̄(r1, r2, r3, r4, t − t ′)⇒ L̄(r1, r2, r3, r4, ω)
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Optical response in practice

Calculation of the macroscopic dielectric function

L̄(r1r2r3r4ω) = L0(r1r2r3r4ω) +

∫
dr5dr6dr7dr8 L0(r1r2r5r6ω)×

× [v̄(r5r7)δ(r5r6)δ(r7r8)−W (r5r6)δ(r5r7)δ(r6r8)]L̄(r7r8r3r4ω)

εM(ω) = 1− lim
q→0

[
vG=0(q)

∫
drdr′eiq(r−r′)L̄(r, r, r′, r′, ω)

]

L0(r1, r2, r3, r4, ω) =
∑

ij

(fj − fi )
φ∗i (r1)φj (r2)φi (r3)φ∗j (r4)

ω − (Ei − Ej )



bg=whiteIntroduction BSE Response In practice

BSE calculations

A three-step method
1 LDA calculation
⇒ Kohn-Sham wavefunctions ϕi

2 GW calculation
⇒ GW energies Ei and screened Coulomb interaction W

3 BSE calculation
solution of L̄ = L0 + L0(v̄ −W )L̄
⇒ proper e-h propagator L̄(r1r2r3r4ω)

⇒ spectra εM(ω)
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Results: Continuum excitons (Si)

Bulk silicon

G. Onida, L. Reining, and A. Rubio, RMP 74 (2002).
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Results: Bound excitons (solid Ar)

Solid argon

F. Sottile, M. Marsili, V. Olevano, and L. Reining, PRB 76 (2007).
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