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1LSI, École Polytechnique-CNRS-CEA, Palaiseau, France
2LPMCN, CNRS-Université Lyon 1, France
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How to relate macroscopic
and microscopic world?
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You will find the content of these slides and more details in

S. Botti and M. Gatti
The microscopic description of a macroscopic experiment,
in “Fundamentals of Time-Dependent Density Functional Theory”,
Chapter 3 (2011).
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From Spectroscopy to Theoretical Spectroscopy

Study of the properties of matter by investigating how it responds to
a perturbation (photons, electrons, neutrons, . . .).

A plot of the response as a function of wavelength – or more
commonly frequency – is referred to as a spectrum.

Theoretical spectroscopy Silvana Botti



Spectroscopy From Maxwell’s equations Averages Dielectric tensor

Energy range

Theoretical spectroscopy Silvana Botti



Spectroscopy From Maxwell’s equations Averages Dielectric tensor

Energy range
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Gaining information on electronic excitations

Optical absorption

Electron energy loss

Inelastic X-ray scattering

Photoemission

Inverse photoemission

. . .
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Absorption

Beer’s law:

I (x) = I0e−αabsx

the absorption coefficient and the
photoabsorption cross section are
proportional:

αabs(ω) ∝ σ(ω)

Also the imaginary part of the dielectric
function and the dynamical polarizability
describe the same process:

αabs(ω)↔ Im {ε(ω)} ∝ Im {α(ω)}
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Electron scattering
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Electron energy loss

Energy Loss Function

d2σ

dΩdE
∝ Im

{
ε−1(q, ω)

}
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X-ray scattering
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Inelastic X-ray scattering

Dynamic structure factor

d2σ

dΩdE
∝ Im

{
ε−1(q, ω)

}

Weissker et al., PRL 97, 237602 (2006)
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How to study optical processes?

The propagation of electromagnetic waves in materials is described by
the Maxwell’s equations, supplemented by appropriate constitutive
equations.

The optical phenomena (reflection, propagation, transmission) can be
quantified by a number of parameters that determine the properties
of the medium at the macroscopic level.

Microscopic (semiclassical) models and averaging procedures yield
these macroscopic parameters.
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The response of a dielectric material to an external electric field

is characterized by three macroscopic vectors:

the electric field strength E,

the polarization P,

the electric displacement D.

The response of a dielectric material to an external magnetic field

is characterized by three macroscopic vectors:

the magnetic field strength H,

the magnetization M,

the magnetic flux density B.

The macroscopic vectors have microscopic counterparts.
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Maxwell’s equations in presence of a medium

∇ · E(r, t) = 4πρind(r, t) + 4πρext(r, t)

∇ · B(r, t) = 0

∇× E(r, t) = −1

c

∂B(r, t)

∂t

∇× B(r, t) =
4π

c
[ jind(r, t) + jext(r, t)] +

1

c

∂E(r, t)

∂t

ρext, jext = external (or free) charges and currents

ρind, jind = induced (or bound) charges and currents
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Maxwell’s equations in presence of a medium

∇ ·D(r, t) = 4πρext(r, t)

∇ · B(r, t) = 0

∇× E(r, t) = −1

c

∂B(r, t)

∂t

∇×H(r, t) =
4π

c
jext(r, t) +

1

c

∂D(r, t)

∂t

ρext, jext = external charges and currents

Continuity equation: ∇ · jext + ∂ρext

∂t = 0
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Constitutive relations

In the linear response regime, for an isotropic medium:

P = χeE

D = E + 4πP = εE

M = χmH

B = H + 4πM = µH

electric permittivity χe

dielectric function ε

magnetic susceptibility χm

magnetic permeability µ
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Linear response

For a sufficiently small perturbation, the response of the system can be
expanded into a Taylor series with respect to the perturbation.

The linear coefficient linking the response to the perturbation is called
response function. It is independent of the perturbation and depends only
on the system.

We will consider only the first order (linear) response.

We will not consider strong field interaction (e.g. intense lasers).

We will consider non-magnetic materials.

Example

Density-density response function: δρ(r, t) =
∫

dt ′
∫

dr′χρρ(r, t, r′, t ′)vext(r′, t ′)

Dielectric tensor: D(r, t) =
∫

dt ′
∫

dr′ε(r, t, r′, t ′)E(r′, t ′)
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Physical quantities that are measured

More about response functions, their relations and sum rules:

N. W. Ashcroft and N. D. Mermin “Solid state physics”

G. Grosso and G. Pastori Parravicini “Solid state physics”
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Macroscopic average

Macroscopic quantities

At long wavelength, external fields
are slowly varying over the unit cell:

λ =
2π

q
>> V

1/3
cell

Typical values:

acell ' 0.5 nm

400 nm ≤ λ ≤ 800 nm (visible)

Example

Eext(r, t), Aext(r, t), vext(r, t),...

Microscopic quantities

Total and induced fields are rapidly
varying: they include the
contribution from electrons in all
regions of the cell.
⇒ Large and irregular fluctuations
over the atomic scale.

Example

Etot(r, t), jind(r, t), ρind(r, t),...
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Macroscopic average

One usually measures quantities that vary on a macroscopic scale.
When we calculate microscopic quantities we need to average over
distances that are

large compared to the cell parameter,

small compared to the wavelength of the external perturbation.
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Averaging procedure

Average the microscopic quantities over a unit cell whose origin is at
point R;

Regard R as the new continuous coordinate appearing in Maxwell’s
equations.

The differences between the microscopic fields and the averaged
(macroscopic) fields are called the crystal local fields.
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Macroscopic average

In a periodic medium, every function can be represented by the Fourier series

V (r, ω) =
∑
q,G

V (q + G, ω)e i(q+G)·r

where R is any vector of the Bravais lattice, G is a reciprocal lattice vector and q
is in the first Brillouin zone.
This is equivalent to write

V (r, ω) =
∑

q

V (r; q, ω)e iq·r

where V (r; q, ω) =
∑

G V (q + G, ω)e iG·r has the periodicity of the Bravais lattice.
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Macroscopic average

For a monochromatic field with wavevector q, the spatial average over a
unit cell is:

V (R, ω) = < V (r; q, ω) >R

=
1

Ω

∫
dr
∑
G

V (q + G, ω)e iG·r

= V (q + 0, ω)

The macroscopic average corresponds to the G = 0 component.
Macroscopic quantities have all their G 6= 0 components equal to 0.
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Macroscopic average

A simple example

vext(q + G, ω) =
∑
G′

εGG′(q, ω)vtot(q + G′, ω)

vext is a macroscopic quantity : vext(q + G, ω) = vext(q, ω) δG0

This not the case for vtot(q + G, ω).

Macroscopic average of vext

vext(q, ω) =
∑
G′

ε0G′(q, ω)vtot(q + G′, ω)

6=ε00(q, ω)vtot(q, ω)

The average of the product is not the product of the averages.
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Macroscopic average

Macroscopic average of vtot

We have also the relation

vtot(q + G, ω) =
∑
G′

ε−1
GG′(q, ω)vext(q + G′, ω)

vext is macroscopic ⇒ vtot(q + G, ω) = ε−1
G0(q, ω)vext(q, ω)

vtot(q, ω) = ε−1
00 (q, ω)vext(q, ω)

vext(q, ω) = εM(q, ω)vtot(q, ω)⇒ εM(q, ω) =
1

ε−1
00 (q, ω)

The microscopic components of the induced field couple to produce the
macroscopic response.
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Macroscopic dielectric function

Question

ε00 is not the macroscopic dielectric function.
What is it then ?

Answer

ε00 is the macroscopic dielectric function without crystal local fields.
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Macroscopic dielectric function

Question

Is the macroscopic averaging always meaningful?

Answer

If the external applied field has a very short wavelength (is not
macroscopic) the averaging procedure for the response function of the
material has no meaning.

When dealing with surfaces, the definition is unclear due to the lack
of periodicity in the direction perpendicular to the surface.
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Microscopic dielectric function

Question

How can we calculate the microscopic dielectric functions?

Answer

They are determined by the elementary excitations of the medium:
interband and intraband transitions, as well as collective excitations,

i.e. one can calculate them using TDDFT or GW+BSE.

You should have already found the answer in other lectures!
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Macroscopic average

Summary

We have defined microscopic and macroscopic fields.

Microscopic quantities have to be averaged to be compared to
experiments.

The dielectric function has a microscopic expression and its
macroscopic counterpart:

εM(q, ω) =
1

ε−1
00 (q, ω)

Absorption ↔ Im {εM} and EELS ↔ −Im
{

1
εM

}
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From the dielectric function to the dielectric tensor

Macroscopic fields

q defines the direction for the propagation: we assume q ‖ x .

Longitudinal fields

E (q) propagates along q

∇× E(r) = 0 or q× E (q) = 0

Longitudinal fields

Electrostatic interaction, plasmon
oscillations, screening, electron
energy loss.

Transverse fields

E (q) propagates ⊥ to q

∇ · E(r) = 0 or q · E (q) = 0

Transverse fields

Photons, optical response of solids.
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General properties of the dielectric tensor

Any vector can be split into longitudinal and transverse components

V(q) = VL(q) + VT(q) ,

such that q× VL(q) = 0 and q · VT(q) = 0 .

In terms of transverse and longitudinal components:

D(q, ω) =←→ε M(q, ω)Etot(q, ω)

 DL

DT

 =

 εLL
M εLT

M

εTL
M εTT

M

 EL

ET


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From dielectric function to dielectric tensor

Question

How can we make the link between

the microscopic dielectric tensor

D(q + G, ω) =
∑
G′

←→ε (q + G,q + G′, ω)Etot(q + G′, ω)

and the macroscopic dielectric tensor

D(q, ω) =←→ε M(q, ω)Etot(q, ω) ?
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Dielectric tensor for cubic symmetries

D(q, ω) =←→ε M(q, ω)Etot(q, ω)

No symmetry

←→ε M(q, ω) =

 εLL εxy εxz

εyx εyy εyz

εzx εzy εzz



Cubic symmetry and q → 0

←→ε M(q, ω) =


εLL
M 0

0 εTT
M



Macroscopic quantities only:
A longitudinal perturbation induces a longitudinal response

A transverse perturbation induces a transverse response
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Cubic symmetries with q → 0

Longitudinal dielectric function

εLL
M (ω) = lim

q→0

1

1 + 4π
q2 χρρ(q, ω)

,

where χρρ(q, ω) is the density-density response function relating the
induced density to the external potential

δρ(r, t) =

∫
dt ′
∫

dr′χρρ(r, t, r′, t ′)vext(r
′, t ′)

Transverse dielectric function

lim
q→0

εTT
M (q, ω)=εLL

M (ω)
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Cubic symmetries with q → 0

In the limit q→ 0

εTT
M (ω) = εLL

M (ω) = lim
q→0

1

1 + 4π
q2 χρρ(q, ω)

Dielectric tensor

The dielectric tensor is diagonal ⇒ scalar dielectric function:

εM(ω) = εLL
M (ω) = lim

q→0

1

ε−1
00 (ω)

We finally reach the familiar result!
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Cubic symmetries with q 6= 0

Longitudinal dielectric function

One can show that the relation

εLL
M (q, ω) =

1

1 + 4π
q2 χρρ(q, ω)

holds also when q 6= 0.

Transverse dielectric function and mixed components

εTT
M (q, ω)6=εLL

M (q, ω)

εLT
M (q, ω) 6= 0 , εTL

M (q, ω) 6= 0

There is no easy way to compute these elements of the dielectric tensor.
Current response functions and further approximations are needed.
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Cubic symmetries

Summary

We have defined the longitudinal and transverse components of the
dielectric tensor.

In the long wavelength limit (q → 0) only a scalar dielectric function
is needed:

εM(ω) = lim
q→0

1

1 + 4π
q2 χρρ(q, ω)

.

When q 6= 0 only εLL
M (q, ω) has a simple expression in terms of the

density-density response function.
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References for cubic symmetries

H. Ehrenrich, Electromagnetic Transport in Solids, in ”The Optical Properties of
Solids”, Varenna Course XXXIV, edited by J. Tauc (Academic Press, New York,
1966) p 106.

R. M. Pick, in Advances in Physics, Vol 19, p. 269.

D. L. Johnson, Phys. Rev. B 12, 3428 (1975).

S. L. Adler, Phys. Rev. 126, 413 (1962).

N. Wiser, Phys. Rev. 129, 62 (1963).
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Non-Cubic symmetries

D(q, ω) =←→ε M(q, ω)Etot(q, ω)

←→ε M(q, ω) =


εLL
M εLT

M

εTL
M εTT

M



Even for q → 0:
A longitudinal perturbation induces longitudinal and transverse responses.
A transverse perturbation induces longitudinal and transverse responses.
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Non-Cubic symmetries

In the general case:

←→ε M(q, ω) = 1 + 4π
←→̃
α (q,q, ω)

1 + 4π
q

q

q
q .
←→̃
α (q,q, ω)

1− 4πα̃LL(q,q, ω)


COMPLICATED! But one can show that the relation

εLL
M (q, ω) =

1

1 + 4π
q2 χρρ(q, ω)

holds also for the non-cubic symmetries.

R. Del Sole and E. Fiorino, Phys. Rev. B 29 4631 (1984).
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Non-cubic symmetries for q → 0

It can be proved that εM is an analytic function of q, then the limit q → 0
does not depend on the direction of q ⇒ εM(ω)

Principal axes

One can find 3 axes n1,n2,n3 defining a frame in which ←→ε M is diagonal.
Applying a field Etot(q, ω) parallel to one of these axes ni leads to

←→ε M(ni , ω) : Etot(ni , ω) = εi (ω)Etot(ni , ω)

whatever the direction of q.
In particular, a longitudinal perturbation induces a longitudinal response:

εi (ω) = εLL
M (ni , ω)

But the relation can also be used for a transverse dielectric function!
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Non-cubic symmetries - Principal axes

For q→ 0, we have defined three quantities:

εLL
M (n1, ω) , εLL

M (n2, ω) , εLL
M (n3, ω)

with

lim
q→0, q‖ni

εLL
M (q, ω) = lim

q→0, q‖ni

1

1 + 4π
q2 χρρ(q, ω)

Along the principal axes

For q → 0:
A longitudinal perturbation induces a longitudinal response.
A transverse perturbation induces a transverse response.
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Non-cubic symmetries

Summary

In the limit q→ 0 for a non-cubic symmetry:

Using the crystal symmetries one can find the principal axes.

The optical properties can be deduced from longitudinal calculations

Keep in mind that the principal frame is not always orthogonal and q
could be different from ni .

If the principal frame is known, on can deduce the optical properties from
a longitudinal calculation performed in this frame.
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Final summary

The key quantities are the microscopic and macroscopic dielectric
tensors.

It is possible to establish the relations between microscopic and
macroscopic fields through averages.

For cubic crystals, the longitudinal dielectric function defines entirely
the optical response in the long wavelength limit.

For non cubic crystals, the longitudinal dielectric functions calculated
along the principal axes can be used to define the optical response in
the long wavelength limit.

For non-vanishing momentum, the situation is not so simple: we can
easily access only the longitudinal response.
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