Some more Fun Things to Compute from the Partition Function of the RNA-RNA Interaction Model

Peter F. Stadler

Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, **University of Leipzig**

Max-Planck-Institute for Mathematics, Leipzig Institute for Theoretical Chemistry, Univ. of Vienna (external faculty) The Santa Fe Institute (external faculty)

> Joint Work with: Fenix W.D. Huang, Jing Qin & Christian M. Reidys

> > Benasque, Jul 27 2012

Two arbitrary secondary structures and non-crossing intermolecular base-pairs

Forbidden configuration: the "zigzag"

Solvable by dynamic programing in the absence of "zigzags": previous work by several groups: Alkan, Pervouchine, Mneimneh, Backofen & Sahinalp

• one of the partners is enclosed by a base pair:

- $\rightarrow\,$ "remove" this pair to reduce to a smaller problem.
- neither of the partners is enclosed by a base pair: Then there are breakpoints p and q in the two sequences such that no pairs connect the block structure x[1, p] : y[q + 1, n] with x[p + 1, n] : y[1, q].
 - \rightarrow cut at *p* and *q* and treat the two blocks separately.

Our unambiguous grammar

Procedure (b)

Full Energy model

additional structural elements that need to be scored multiloop-like model

Full Energy model

- Ugly but doable:
 - \rightarrow Hamidreza's talk just before
- $\mathcal{O}(n^6)$ time and $\mathcal{O}(n^4)$ memory
- Most of the arrays are used to store information for backtracing: 16 + 24 + 18 + 15 = 73 four-dimensional arrays
- Improved version:

 $15\,+\,20\,+\,20\,=\,65$ four-dimensional arrays with a stochastic backtracing

3'-

-5'

(B)

gcvB/dppA

Interaction Regions

Probability $\pi_{i,j}$ that the basepair i, j is contained in an interacting region

... and correlations between them

RIP for Multiple sequence alignments Andrew X. Li, Manja Marz, Jing Qin, Christian M. Reidys

- RNAalifold-like energy model: average of the energies of the individual aligned sequences
- small bonus energies for sequence covariations

RIP for Multiple sequence aligments

Andrew X. Li, Manja Marz, Jing Qin, Christian M. Reidys

RIP for Multiple sequence aligments

Andrew X. Li, Manja Marz, Jing Qin, Christian M. Reidys

Peter F. Stadler (U Leipzig)