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Examples of well-known RNA structures:

Examples of global RNA structures, i.e. where most of RNA sequence is
structured most of sequence

e tRNAs map codons of mRNA to amino-acids
e rRNAs determine ribosome’s structure and function
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However, not all RNA structures are global:
RNA structural elements in transcripts of protein-coding genes
e pre-mRNA: RNA editing sites, riboswitches binding metabolites,
structures regulating splicing and alternative splicing
e mRNA: translation initiation and efficiency, degradation,
localization, riboswitches binding metabolites
= only part of transcript structured (local RNA structures) and one
sub-sequence may encode multiple and mutually exclusive structures

Garst and Batey (2009) Biochim Biophys Acta
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Existing methods for predicting kinetic folding pathways:

e take a single RNA sequence as input

e make a range of simplifying assumptions
e transcription speed is constant
e no interactions with other molecules

e no detailed modeling of cellular environment (concentrations of
different ions, temperature etc)

e further limitations

e can typically only handle short sequences (typically << 1000
bp)

Examples:

e RNAKINETICS by Mironov et al.
e KINFOLD by Flamm et al.

e KINEFOLD by Isambert et al.

o KINWALKER by Geis et al.



Motivation

Wishlist and inspiration for TRANSAT:

We would like to have a method that ...
e can detect conserved transient, mutually exclusive and
pseudo-knotted structure elements

e does not assume that any input sequence contains a global RNA
structure

e is fast, i.e. can be employed on a genome-wide scale and
long-transcripts such as human pre-mRNAs

e highlights evolutionarily conserved structure elements

e provides more than yes-no predictions, i.e. quantifies reliability of
predictions (p-value)



Motivation

Wishlist and inspiration for TRANSAT:

In order to achieve this, we ...
e predict individual helices rather than entire RNA structures that
could be realized at the same time

e choose a comparative method that takes a fixed input alignment
(this is no real limitation, see e.g. Meyer and Miklés (2007) PLoS
Computational Biology)

e employ probabilistic models of RNA structure and of evolution

e use deterministic dynamic programming algorithms to predict
features efficiently

e model null-distributions in order to assign reliability values

This means that we

- do not model RNA structual features as function of time (see
folding pathway prediction methods), BUT

+ we do not need to model the complex cellular environment in vivo
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TRANSAT: underlying algorithms
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TRANSAT: overall strategy

Input: Tree Alignment
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TRANSAT: overall strategy (cont'd)

Project all helices back
onto alignment

e
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QG )
D
....... CCCCona e D)o

CCCConnnniiiin. )

Calculate Log-likelihood score,
p-value for each helix

P-value | Log-likelihood Base Pair Positions
Score
0utput 0.43 -3.45 2:15,3:14,4:13,8:12
Table: 0.02 1.38 13:23,14:22,15:21,16:20
0.62 -4.56 1:24,2:23,3:22,4:21




Motivation Transat: algorithms Data sets Performance evaluation Examples Acknowledgments

Step 1: finding and mapping helices

e find helices for each sequence individually (min length 4 base-pairs
(can be specified by user))

e map helices of sequences back to alignment (conserved helices)

Unaligned Helix | UGCUCACCCCUAAUGAAAGGGGUGAU
.. (e s 2233200

Aligned Helix | UGCUCACCCCU-AAUGAA-AGGGG-UGAU
A (R 23323.0)).

= Advantage:

e less dependent on alignment quality than when detecting helices for
entire alignment
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Step 2: calculating log-likelihood values
For each conserved helix h in alignment, calculate a log-likelihood value
Ay, to test two competing hypotheses:

e A, < 0= two regions more likely to be unpaired
e Ay > 0= two regions more likely to form a helix

SOt 22300
-CCGGGCGCC-UGAC-GGGCUCGGC
CCCCGACGCC-UCAU-GGGUCGGGA
-CCGGGCGCCCUUCGGGGGCCCGaC
-GCCGAUGCC-AAUU-GGGUCGGCA
-UCGGG-GC--UUCG--G-CCCGAC

X1 X2 X3 X4 X5 X i Yoysyayyy
Helix

Ap = log, ( P(x, ¥|0pairea. T) ) 1
' 2 \ P(x[0unpaired: T) P(¥|0unpaired. T) ) 1

Unpaired

-CCGGGCGCC-UGAC-GGGCUCGGC
CCCCGACGCC-UCAU-GGGUCGGGA
-CCGGGCGCCCUUCGGGGGLCCGaCL
-GCCGAUGCC-AAUU-GGGUCGGCA
-UCGGG-GC--UUCG--G-CCCGAC

X[ X2X3X4 X5 X6 V6YsYay3y2)i
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Step 2: calculating log-likelihood values (cont'd)

Have two probabilistic evolutionary models to calculate the log-likelihood
values using the Felsenstein algorithm:

e evolutionary model for base-pairs (rate matrix is 16x16 matrix)

e evolutionary model for un-paired nucleotides (rate matrix is 4x4
matrix)

Key ideas of Felsenstein algorithm:

e consider only the observed nucleotides/base-pairs at leaf nodes of
evolutionary tree

e sum over all possibilities for nucleotides/base-pairs at internal tree
nodes and weight them according to their corresponding
evolutionary model
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Step 3: estimating p-values for log-likelihood values

Original Alignment
[ T

Challenge: -

e range of log-likelihood values ]
very much depends on -
properties of each input T
alignment | T

* Realign

Shuffle
Columns

E \ Null distribution of
log-likelihood

scores

o ideally, we would like to know
for each log-likelihood value
what the probability of seeing
it by chance is (i.e. its p-value)

= Solution:

Find and Score
all Helices

estimate p-values for log-likelihood o
values in each input alignment m/



Data sets

Data sets for performance evaluation:

. two sequences with known multiple RNA structures

o hok data set: 9 sequences, 196 bp length, total tree length 2.31
e trp data set: 8 sequences, 117 bp length, total tree length 2.29

. set of 134 high-quality alignments from the RFAM database
[Gardner et al. (2009) NAR 37:D136-140] (Rfam data set)

e structural annotation is correct, but may not be complete
e 6 to 712 sequences per alignment, 100 to 1247 bp length, total
tree length 0.4 to 116.3 (average 10.0)

. set of 990 artificially generated alignments (artificial data set)
generated by GENERAID (unpublished)

structural annotation is correct and complete

no alignment errors

can perform detailed tests

derived for known structures from the RNA STRAND database
[Andronescu et al. (2008) BMC Bioinformatics 9:340]

e 10 sequences per alignment, 100 to 1000 bp length, total tree
length 0.5 to 16



Performance evaluation

Results: hok data set

5] 5L -
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FPR PPV p-value threshold
Performance definitions:
Sens := TP/(TP + FN) (1)
FPR :=FP/(TN + FP) (2)
PPV :=TP/(TP + FP) (3)
2 -Sens - PPV 2-TP

F-measure := ens = (4)

Sens+ PPV ~ 2.-TP+FN+FP

where TP (true positives), TN (true negatives), FP (false positives) and
FN (false negatives)
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= select a p-value

of 1073 as default threshold

= no correlation with alignment quality (at least in our RFAM data set)
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Results: artificial data set

1.0

100-199
200-299
300-399
400-499
500-599
600-699
700-799
800-899
900-999
T T T T T T T T T T T T T T T T T T

00 02 04 06 08 1.0 00 02 04 06 08 10 le-5 le-3 le-1 1e0

Sens
Sens

F-measure

00 02 04 06 08

I
00 02 04 06 08 1.0
00 02 04 06 08 10

FPR PPV p-value threshold

1.0
1.0
1.0

Sens
o
Sens
F-measure

00 02 04 06 08
I

00 02 04 06 08

00 02 04 06 08

T T T T T T T T T T T T T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 10 le-5 le-3 le-1 1e0

FPR PPV p-value threshold

= little dependence on alignment length
= fairly strong dependence on total tree length
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Results: artificial data set for overlapping helices

e develop a novel evolutionary model for overlapping helices

o key feature: one nucleotide may be simultaneously base-pair with
up to two other nucleotides

a b c

e use this model to generate artificial data set with overlapping helices
in order to test if TRANSAT can reliably detect them

F-measure

00 02 04 06 08 10

le-5 le-3 le-1 1e0

p-value threshold
= TRANSAT can predict overlapping helices well for a wide range of
total tree lengths
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Predictions for hok alignment: arc-diagram

o default p-value threshold: 1073

e horizontal line: input alignment
e top arcs: known base-pairs (black
if not predicted)
e bottom arcs: new base-pairs
e colour coding for predicted
base-pairs:
< 1073 green,
< 10~* blue,
<1073 orange,
< (p-value threshold) red

o TRANSAT predicts most helices of the two known structures

e in addition, TRANSAT predicts three statistically significant,
mutually exclusive conserved helices
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Predictions for vertebrate and ciliate telomerases

Vertebrate telomerase (left, RF00024) and ciliate telomerase (right,
RF00025) for a p-value threshold of 103.

e known pseudo-knotted structure of vertebrate sequences captured
well by TRANSAT prediction

e folding of vertebrate sequences may involve large-range structural
arrangements
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Evidence for new pseudo-knots

e new helices A and B
make known structure
pseudo-knotted

e |ittle covariation for
helix B, but a lot for
helix A

e pseudo-knots typically
ignored in
computational
predictions and easily
missed in manual
annotation

S-adenosyl-L-homocysteine riboswitch family (top, RF01057), a riboswitch found on
certain bacterial mRNAs, and the glmS glucosamine-6-phosphate activated ribozyme
(bottom, RF00234), a bacterial ribozyme for a p-value threshold of 10~3.
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Highlighting un-structured sequence regions
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Bacterial transfer-messenger RNA (tmRNA) (RF00023) for a p-value
threshold value of 10~3 (left) and 10~* (right).

e known pseudo-knotted structure of vertebrate sequences captured
well by TRANSAT prediction

e region of tmRNA that contains open reading frame (ORF) is devoid
of significant helices
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Information on potential folding pathways in vivo

() )

e helices 4, 6 and in particular 10
show covariation, but not on
the same level as known helix 2

e predicted helices suggest
time-wise ordering of potential
folding pathway

Cripavirus internal ribosomal entry site (IRES), RF00458, for a p-value
threshold of 1073,



Examples

Summary TRANSAT
Main features:

e takes a fixed input alignment and tree and predicts stat. significant,
conserved helices

Disadvantage:
- does not predict folding pathway as function of the time
Advantages:
+ capable of detecting transient, competing and pseudo-knotted
helices that have been conserved

+ fairly robust w.r.t. aligmnent errors

-+ does not require modeling of detailed cellular environment and
makes very few assumptions

+ assigns reliability values to its predictions
-+ high performance accuracy for a wide range of data
+ fast and memory efficient



Motivation Transat: algorithms Data sets Performance evaluation Examples Acknowledgments

Acknowledgements:

My group (including Evan, the photographer ...) enjoying a precious day
without rain.



Motivation Transat: algorithms Data sets Performance evaluation Examples Acknowledgments

Acknowledgements:

Nick Wiebe

e TRANSAT: Wiebe & Meyer, PLoS Compbio (2010), 6(6):e1000823.
TRANSAT: web-page at www.cs.ubc.ca/” irmtraud/transat/
R-CHIE: Lai, Proctor, Zhu and Meyer, NAR (2012) 40(12):e95.

e R-CHIE web-server at www.e-rna.org/r-chie

Funding:

e Canadian Foundation for Innovation
e CIHR, Canada
e NSERC, Canada



