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Challenges for numerics

Fermionic lattice models
• Phase diagrams of even simple models 

such as the t-J or Hubbard model are 
still disputed

Frustrated spin systems
• Existence of exotic phases, in particular 

without local order as T→0
• Topological spin liquids
• Gapless spin liquids: Fermi sea of 

fractionalized excitations
• SU(N) models, orbital models, Kondo 

models
Realistic systems

• Materials, quantum chemistry
• Structure factors of quasi-1d 

frustrated magnets for neutron 
scattering

• Fraction Quantum Hall systems
Time evolution

• Equilibration/relaxation/thermalization
• Preparation of states in an optical lattice
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Tensor networks in 2d

Brute force, but well-
controlled

Elegant, but somewhat 
uncontrolled

The dark side: DMRG

• DMRG scales exponentially in 2d!

• System sizes much larger than ED

• Several recent successes

PEPS, MERA, EPS, TTN, ...

• Polynomial scaling for 2d systems, or 
even thermodynamic limit immediately

• Small bond dimension and little 
numerical experience

Maybe we should combine approaches?
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Multi-flavor Hubbard models
• Multi-flavor Hubbard models can be realized in cold atomic gases

• Lots of cooling and commensurable filling: Mott insulator

• Even more cooling: spin order

H = −t
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SU(2) • Square lattice: antiferromagnet
• Triangular lattice: 120° order

SU(3)
• Fix one particle per site
• Spin order unknown for both 

triangular and square lattice
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• We concentrate on three-flavor case with one particle per site and derive an 
effective model in t/U

• We study the square and triangular lattice

SU(3) Heisenberg model

H = J
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Spin-1 bilinear-biquadratic model

• Mean-field phase diagram for the square lattice 
(Papanicolaou, 1988):

• SU(3) point at transition from antiferromagnet to 
“semi-ordered phase”

• Square lattice does not give enough constraints to 
uniquely fix ordering in that phase

• Triangular lattice:

• Enough constraints at the SU(3) point: three-
sublattice order

H =
�

�i,j�

�
cos θ(�Si · �Sj) + sin θ(�Si · �Sj)

2
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Mean-field phases

Square lattice

• Semi-ordered phase is characterized by 
infinitely many degenerate ground 
states between 2- and 3-sublattice 
order

Triangular lattice

• SU(3) point has three-sublattice order

Do quantum fluctuations select some 
type of order, or does a completely 

different phase emerge?

Previous work:  Tóth et al, PRL 2010

Is this stable under 
quantum fluctuations?
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The dark side: DMRG in 2d

Review of recent 
work

Choice of cluster 
size and boundary 

conditions

Measurements

Results
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Some recent 2d DMRG results
• White & Chernyshev, PRL 99, 127004 (2007)

• SU(2) Heisenberg model on square and triangular lattice

• Results for square lattice with similar accuracy as MC after careful extrapolation 
in truncated weight and system size

• Lots of prior knowledge from spin-wave theory 4
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FIG. 4: (Color online). DMRG results for the 45◦ tilted SLHM.
(a) The solid lines are straight segments connecting the discrete data
points from different lattice sizes, with Ly = ly

√
2. The two dashed

lines show the bounds on the QMC result.[4] (b) A three parameter
fit to the data from (a), as discussed in the text.

we obtainM0 = 0.3067, αc = 1.9252, and a = −0.1580. In
Fig. 4(b) we show a representation of this fit. The solid lines
are based on the fit; the data points for α = 1.9 and α = 1.925
are obtained from linear extrapolation along the lines shown
in (a). The result forM0 is consistent with, and of comparable
accuracy to the best QMC result.
For the triangular lattice, we have studied a variety of clus-

ters and pinning fields; these results consistently supported
that the triangular system has the three-sublattice 120◦ order
found in other studies. The cluster orientation shown in Fig.
1 seems to be the most convenient and efficent for a DMRG
analysis to obtainM0. Our DMRG results for comparable lat-
tice sizes are only slightly less accurate than for the SLHM.
Unfortunately, the finite size analysis for the TLHM is

much less accurate. The allowed widths in the preferred ge-
ometry must be multiples of 3, and our results for Ly = 12
are of low accuracy, leaving only Ly = 3, 6, 9. Currently, we
do not have comparable analytical guidance, such as predic-
tions for the optimal aspect ratio, for the triangular case. In
Fig. 5 we show results for the TLHM with this orientation
and also for lattices rotated by 90◦. The scaling behavior ap-
pears to be quite similar to the SLHM, but with a somewhat
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FIG. 5: (Color online). MC versus aspect ratio for various widths for
the TLHM, from DMRG. The two curves labeled with ly come from
clusters rotated by 90◦, with Ly = ly

√
3.

smaller αc ∼ 1.6 − 1.7. Assuming this behavior, we estimate
M0 = 0.205(15). The results for the tilted clusters seem to
have larger finite size effects and are less useful. Our result is
consistent with recent QMC and series expansions forM0 for
the TLHM[7, 8].

In conclusion, we have developed improved techniques for
studying ordering in 2D lattice systems using DMRG, making
DMRG competitive with QMC and series expansion methods
for the 2D Heisenberg model on square and triangular lat-
tices. These include proper scaling of local quantities with
the discarded weight, and the use of non-traditional cluster
geometries and BCs to improve finite-size scaling. These
latter techniques can be used with other methods besides
DMRG. We acknowledge the support of the NSF under grant
DMR-0605444 (SRW), and the DOE under grant DE-FG02-
04ER46174 (ALC).
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Some recent 2d DMRG results
• Yan, Huse & White, Science 332, 6034 (2011)

• Spin liquid ground state on the Kagome lattice

• Previous best energy: Evenbly & Vidal, PRL 104, 
187203 (2010)

• See also Stefan Depenbrock’s poster downstairs

• Jiang, Yao & Balents 2011, arXiv:1112.2241

• Spin liquid ground state in the J1-J2 model on the 
square lattice

• Previous work with PEPS: Murg, Verstraete & Cirac, 
PRB 79, 195119 (2009)

• Current work with PEPS: Wang, Gu, Verstraete & 
Wen, arXiv:1112.3331

3

prepared in the HVBC state, and the ordering of the
sites of the cylinder used by the DMRG followed an ir-
regular path which always makes any two sites sharing a
valence bond in the HVBC adjacent. (This biased spe-
cial ordering allows a perfect non-resonating HVBC to be
represented keeping only m = 2 states per block.) These
biases towards the HVBC state (particularly the order-
ing) make it metastable out to about m = 2400, after
which it transitions to a spin liquid state. The irregular
edges (along with a variety of other considerations) allow
us to completely rule out the possibility that the uniform
state is a superposition of shifted HVBCs. The final state
is a remarkably uniform spin liquid in the center of the
system, with only slight perturbations from the open, ir-
regular edges and incomplete convergence, and a slight
anisotropy from the finite circumference. This system
clearly has a very small length scale for the decay of the
perturbations due to the ends. If we use a more conven-
tional ordering of sites, the HVBC is not even metastable;
it disappears within the first few sweeps with m < 200.
Energies are generally lower for a fixed m for the stan-
dard ordering than for the special ordering.

We do not find the HVBC to be the ground state on
any of the cylinders we have studied. However, on the
largest circumference cylinders, for which our accuracy is
much reduced, the HVBC can be metastable even with
the more unbiased standard site ordering. (A small bias
is still present favoring the less entangled HVBC state.)
For these systems we can compare energies between a pre-
pared HVBC state and other states. Even in cases where
the final energies are not accurate enough to clearly pick
one state, we may be able to judge that the HVBC is
not the ground state. In Fig. 2 we show such a case
for a 400 site YC12 cylinder. Two runs were performed,
one pinned to start as a HVBC, the other started with
an essentially random initial state. Just after the pin-
ning is released at m = 600, we see the HVBC has lower
energy. However, near m = 2000 the initially random
state is finding the spin liquid state and becomes lower
in energy. Subsequently, the difference between the two
energies widens as m is increased. The final state (not
shown) appears to be a spin liquid with several localized
defects which the simulation had not yet eliminated.

The series expansions of Singh and Huse16 treat the
HVBC strong-bond interactions as having a fixed J = 1,
while the weak bonds have their interactions modified by
a factor λ; the expansion is about λ = 0, and the uniform
kagome lattice has λ = 1. We have studied the ground
state along this path of modified Hamiltonians H(λ) for
a 194-site XC8 cylinder. Along this path the system has
an apparent first-order phase transition near λc = 0.984.
This transition is most clearly seen using a “hysteresis
plot”. In Fig. 3 we show results from three different
runs. Each run has a fixed m, and λ is changed between
each DMRG sweep, with λ first increasing, then decreas-
ing (note the arrows). The simulation cannot adapt the
wavefunction from one phase to another in one sweep, so
the system shows hysteresis, staying in the old higher en-
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FIG. 2: Total energy E as the number of states kept m is
increased for a 400 site YC12 cylinder, with two different ini-
tial states—one essentially random, the other with temporary
pinning fields to force an HVBC.
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FIG. 3: Hysteresis plot for a 194 site XC8 cylinder show-
ing the apparent first-order phase transition between valence
bond crystal and spin liquid. For each of the three runs,
the Hamiltonian parameter λ (see text) is changed for every
DMRG sweep, thus tracing out a path through parameter
space that resembles the time evolution of a system under
changing λ. A linear approximation to the main trend of the
energy E with λ has been subtracted out.

ergy state for several sweeps before drifting down to the
new lower energy state. The crossing point of the curves
in the two different directions converges very rapidly with
increasing m to the transition point λc, even though the
total energies have lower accuracy. This first-order tran-
sition shows why the series expansion converged so well,16

but to an energy that was not the ground state energy
at λ = 1.
For any of the cylinder geometries we can obtain an es-

timate of the energy per site for the infinitely long cylin-
der by subtracting energies of cylinders of different length
to eliminate end effects. The best results are obtained by
doing a sequence of m values for each cluster and extrap-
olating in the truncation error. For λ = 0.98 on XC8,
which is in the HVBC phase, we obtain an energy per

3

states, we follow Refs. 21–23, and first target only one state,

sweeping enough to obtain a high-accuracy ground state; then

we restrict the range of bonds that are updated in the DMRG

sweeps to the central half of the sample and target the two

lowest-energy states, again sweeping to high accuracy, but

keeping the end regions of the samples locally in the ground

state. To obtain the spin triplet gap, we do similar things, but

target states with total Sz = 0 and Sz = 1 separately. As for

the staggered magnetization, we perform a second order poly-

nomial extrapolation of the singlet and triplet gaps to the ther-

modynamic limit (Figs. 2(c,d)). Consistent with expectation,

both ∆S(L = ∞) and ∆T (L = ∞) vanish in the two AFM

phases. They are both, however, non-zero and large, in the

intervening region (see Fig. 1). This rules out any state with

broken SU(2) spin symmetry. We note that the singlet gap re-

mains consistently below the triplet gap throughout the inter-

mediate phase, which is an indication that short-range singlet

formation is basic to the physics.

We next consider possible VBS order, which has been con-

sidered a prime candidate for non-magnetic symmetry break-

ing in the intermediate phase. From the dimer operators

Dα
i ≡ Si · Si+α on bond (i, i + α) with α = x̂ or ŷ,

we define the dimer-dimer correlation functions �Dα
i D

β
j �,

with the corresponding structure factor Mαβ
d (k, L) =

1
L2

�
ije

ik·(ri−rj)
�
�Dα

i D
β
j � − �Dα

i ��D
β
j �
�

. Typical VBS

patterns expected theoretically have momentum kx = (π, 0)
or ky = (0,π), so to study the correlations, we focus on Ly

even, for which ky = π is an allowed momentum. We indeed

observe a maximum in Maa
d (k, L) at k = ka (a = x, y), and

therefore define the dimer order parameters by m2
d,a(L) =

1
L2Maa

d (ka, L). As shown in the inset of Fig.3(a), m2
d,y(L)

is maximum for finite systems within the intermediate phase

[m2
d,x(L) shows similar behavior]. However, this is a finite-

size effect: the extrapolated dimerization m2
d,a (see Fig.3(a))

for L → ∞ is zero for all 0 ≤ J2 ≤ 1. The complex or-

der parameter md,x + imd,y in fact is sufficient to detect and

distinguish both columnar and plaquette VBS phases
27

, but as

an additional check we measure directly the correlations of

the plaquette operator Pi = 1
2 (Πi + Π−1

i ) where Πi cycli-

cally permutes the four spins of the plaquette i in a clockwise

fashion. The plaquette order parameter determined from the

corresponding structure factor (see Supplementary Informa-

tion) is shown in Fig. 3(b). Like the VBS order parameter, it

vanishes in the extrapolation to the thermodynamic limit.

The above results are strong evidence against conventional

ordering in the intermediate region. We now seek positive
evidence for a QSL with topological order. First, we con-

sider the topological entanglement entropy γ, a universal con-

stant correction to the usual area law of entanglement entropy.

This is non-zero only in quantum states with non-trivial long

range entanglement
28,29

. In Fig.4, we plot von Neumann en-

tanglement entropy S(Ly) associated with the constant x cut

which separates cylinders into two symmetric parts as a func-

tion of Ly with Ly even and then extrapolate γ from the fitting

function S(Ly) = aLy + γ. As expected, we obtain vanish-

ing γ in the Néel and striped AFM phases, as shown e.g. in

Fig.4(a). However, for J2 = 0.5 whose ground state is deep
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FIG. 4: The entanglement entropy S(Ly) for Ly = 4, 6, 8, 10 for
J2 = 0.0 (a), and J2 = 0.5 (b). By fitting S(Ly) = aLy + γ, we

obtain γ ∼ 0.0 at J2 = 0, while γ ∼ −0.9 at J2 = 0.5.
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FIG. 5: Finite-size scaling of the dimer order parameter Dd,x̂ for
odd Ly at Lx = ∞. The inset shows the dimer pattern for odd

Ly = 3.

in the magnetically disordered phase, our results show that

γ ∼ −0.9 ± 0.3. A non-zero γ is a strong indication for

a topological QSL. Quantitatively, our result is is reasonably

close to the value of − ln(2) ≈ −0.69, which is the maximum

possible for a Z2 QSL with the chosen cut (see Supplementary

Information).

A second test of the topological Z2 QSL state is a dramatic

even-odd effect, first obtained to our knowledge in Ref. 30, by

analysis of quantum dimer models
31,32

. Specifically, for a long

cylinder with (even) Lx → ∞ and odd Ly , the Z2 QSL in-

duces a non-vanishing dimerization �Dx
i � = Dx+Dx(−1)xi ,

with Dx ∼ e−Ly/ξy exponentially decreasing with circum-

ference. By contrast, no dimerization appears for even Ly .

We obtain this behavior in the Supplementary Information di-

rectly from the effective Z2 gauge theory description. Pre-

cisely this behavior is observed in our numerics: Fig.5 shows

the exponential behavior of Dx obtained as the difference of

even and odd bonds at the center of the sample, with ξy ≈ 10.

An example dimer pattern for Ly = 3 is shown in the inset.

While some even/odd finite-size effect might be expected in

a columnar dimer phase, the exponentially-decaying behav-

ior and results of other tests (see Supplementary Information)

seem consistent only with a Z2 QSL.
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Some recent 2d DMRG results
• Jiang, Gu, Qi & Trebst, PRB 83, 245104 (2011)

• Heisenberg-Kitaev model with magnetic field

• Interpolates between Kitaev’s honeycomb model and Heisenberg model and 
describes certain Iridate compounds 2
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FIG. 1: (color online) Ground-state phase diagram of the
Heisenberg-Kitaev model (1) in a �111� magnetic field of strength
h. Interpolating from the Heisenberg (α = 0) to Kitaev (α = 1)
limit for small field strength, a sequence of three ordered phases is
observed: a canted Néel state for α � 0.4, a canted stripy Néel state
illustrated in Fig. 2c) for 0.4 � α � 0.8, and a topologically ordered
state for non-vanishing field around the Kitaev limit. All ordered
phases are destroyed for sufficiently large magnetic field giving way
to a polarized state.

FIG. 2: (color online) a) The honeycomb lattice spanned by unit
vectors �a1 = (1, 0) and �a2 = (1/2,

√
3/2). Illustration of magnetic

states with b) Neel order and c) stripy Neel order.

we consider clusters of size N = 2 × N1 × N2, which are
spanned by multiples N1�a1 and N2�a2 of the unit cell vectors
�a1 = (1, 0) and �a2 = (1/2,

√
3/2) as illustrated in Fig. 2.

It should be noted that the numerical analysis of Hamiltonian
(2) is a challenging endeavor, since not only the entire Hilbert
space needs to be considered (due to the lack of SU(2) invari-
ance), but one also has to work with complex data types (due
to the �111� orientation of the magnetic field). Our DMRG
calculations keep up to m = 2048 states, which is found
to give excellent convergence with typical truncation errors
of less than 10−8. We further use periodic boundary condi-
tions in both lattice directions, which reduces finite-size ef-
fects. We have determined the phase boundaries in Fig. 1 by
extensive scans of the ground-state energy, magnetization, and
their derivatives in the (α, h)-parameter space [11].

Magnetically ordered states.– We start our discussion of
the phase diagram shown in Fig. 1 by first recapitulating previ-
ous results [8] for the Heisenberg-Kitaev model (1) in the ab-

sence of a magnetic field. Interpolating the relative coupling
strength α between the isotropic Heisenberg limit (α = 0)
and the highly anisotropic Kitaev limit (α = 1) a sequence
of three phases has been observed [8]: The Néel ordered state
of the Heisenberg limit is stable for α � 0.4, when it gives
way to a ‘stripy’ Néel ordered state illustrated in Fig. 2 which
covers the coupling regime 0.4 � α � 0.8. In the extended
parameter regime 0.8 � α ≤ 1 the collective ground state is
a gapless spin liquid. Near α = 1, perturbation theory reveals
that the gapless excitations of this phase are emergent Majo-
rana fermions forming two Dirac cones in momentum space.

Including a magnetic field in the �111� direction a rich
phase diagram evolves out of this sequence of three phases.
For the magnetically ordered states we find that the orientation
of the order in the Néel and stripy AFM phase cants along the
�111� direction. To further characterize these canted states,
it is helpful to analyze the independent symmetries of Hamil-
tonian (2). Besides the lattice translational symmetry T and
a reflection symmetry I around the centers of the hexagons,
there is an additional C∗

3 symmetry, which is a combination
of a three-fold rotation around an arbitrary lattice site and a
three-fold spin rotation along the �111� spin axis [12]. Both
canted phases break a subset of these discrete symmetries of
the Hamiltonian. The canted Néel order breaks the C∗

3 and
the I symmetries, which thus leads to a six-fold ground-state
degeneracy in this phase. The canted stripy phase breaks both
the C∗

3 and translational symmetry (since the ordering pattern
doubles the unit cell). As a consequence, we also find a six-
fold ground-state degeneracy in this phase.

For sufficiently large magnetic field, the order of both
canted phases is destroyed and they give way to a simple po-
larized state. Our numerical simulations strongly suggest that
the transitions between the polarized state and these canted
states are continuous, which is in agreement with their spon-
taneous symmetry breaking. On the other hand, the transition
between the two canted states at finite field strength (indicated
by the bold line in Fig. 1) is found to be first-order. In our sim-
ulations this is indicated by a sharp drop of the first derivative
of the energy dE/dα as a function of the coupling parame-
ter α across this transition – as shown in Fig. 3 for increasing
strength of the magnetic field h. Approaching the endpoint
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FIG. 3: (color online) Energy jump along the first-order transition
between the canted Néel and stripy AFM.
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The dark side: DMRG in 2d

Review of recent 
work

Choice of cluster 
size and boundary 

conditions

Measurements

Results
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DMRG in 2d: entanglement

W

L

• Bond dimension of the MPS:

• Scaling of entanglement:

• There is an easy (L) and a hard (W) 
direction!

S ∼ W

S ∼ L

M ∼ expS

Use long rectangles!
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DMRG in 2d: boundaries

W

L

• Physically, periodic boundary conditions 
are often preferable

• In 1d DMRG:  S → 2S

• Naive approaches need the square 
of the bond dimension, better 
approaches exist but numerically not 
as robust and precise

• PBC in 2d DMRG:

• L direction: same problem as 1d

• W direction: not as bad
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DMRG in 2d: boundaries

• Physically, periodic boundary conditions 
are often preferable

• In 1d DMRG:  S → 2S

• Naive approaches need the square 
of the bond dimension, better 
approaches exist but numerically not 
as robust and precise

• PBC in 2d DMRG:

• L direction: same problem as 1d

• W direction: not as bad

Use cylinders, avoid the torus!

WL
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Scaling

Computation:

MPO bond dimension: D ∼ W

O(LW ·D ·M3) +O(LW ·D2
·M2)

O(D ·M2)

O(LW ·D ·M2)

Memory:

Disk:

Without SU(2) symmetry: memory 
and disk space are limiting factors!
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DMRG in 2d: local moments

• Long-range correlations are not reliable 
for 2d systems

• Break symmetries by hand at the 
boundary and watch the system far 
away!

• Reduces entanglement significantly

“Pinned” order with flavor-
dependent chemical potential
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DMRG in 2d: extrapolation
• Long-standing question: what’s the correct way to extrapolate?

• Number of states: usually not very reliable

• Truncated weight: standard technique, but sometimes difficult with single-site 
update

• Energy variance: computationally difficult for large 2d system and complex 
Hamiltonians
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The dark side: DMRG in 2d

Review of recent 
work

Choice of cluster 
size and boundary 

conditions

Measurements

Results

mailto:bauerb@phys.ethz.ch
mailto:bauerb@phys.ethz.ch


Bela Bauer - bauerb@cnsi.ucsb.eduMay 17, 2012

iPEPS
• Square lattice ansatz for both square and 

triangular lattice: P. Corboz et al, PRB 82, 45119 
(2010)

• Directional corner transfer matrix scheme for 
general unit cells: P. Corboz et al, PRB 84, 041108 
(2011)

• 3x3 unit cell to stabilize three-sublattice state, 
2x2 unit cell for antiferromagnet

• Z3 symmetry: Bauer et al, PRB 83, 125106 (2011)

|αi� |βi�

|σi�

|αi� |βi�

|γi�

|δi� |σi�
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DMRG results
• Unknown finite-size scaling: stick to (almost) square systems

• Computational challenges:

• Large dimension of the MPO (~twice of SU(2) case)

• Need to use large bond dimension already in early stages due to non-mean 
field nature of the order

• Very large entanglement

• Up to M ~ 5000 states, check for up to M ~ 6400 in some cases → system 
size up to 8x8
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DMRG results

6x8 square lattice, 
cylindrical BCs,

M=4800
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Huge finite-size corrections 
for periodic chain → use 
open boundaries after all
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DMRG results
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Triangular lattice
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• Energies of all methods match 
qualitatively

• iPEPS 3x3 is much lower than iPEPS 2x2

• DMRG has weak finite-size dependence

• Order parameters are consistent with 
40-50 % of saturation moment
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Square lattice
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• Again, iPEPS 3x3 has much lower energy 
than iPEPS 2x2

• DMRG energies are comparable and 
consistent with ED

• Strong dependence of moment in iPEPS 
calculation leaves a large margin of error

• DMRG results seem consistent with 
magnetization in the range 30-40 % of 
the saturation moment
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Systems with various scales
• Local optimization (DMRG) almost always works

• One class of exceptions: dilute systems

• Weakly doped systems (cf. Davide Rossini’s talk 
last Monday)

• Discretized continuous systems

• These systems have various length scales:

• Doped systems: lattice spacing, size of a hole, 
global density modulation

• Discretized continuous systems: discretization dx, 
external potential

• Energy scales: hopping ~ 1/dx2, interaction ~ 1/dx, 
potential ~ 1

DENSITY OSCILLATIONS FERMI-HUBBARD LADDERS

these oscillations are symmetric in space, the value of

S =
1

L

L/2�

i=1

�
n(i)− n(L+ 1− i)

�2
(52)

is analytically equal to zero. Therefore computing this quantity in simulations can be used to

judge the quality of numerical results. In Eq. (52) L is the length of the ladder, assumed to be

even, and

n(i) =
n1(i) + n2(i)

2
(53)

stands for the expectation value of the particle density at rung i, averaged over both legs of the

ladder λ = 1, 2, where

nλ(i) = �c†i,λ,↑ci,λ,↑�+ �c†i,λ,↓ci,λ,↓�, (54)

the total density at rung i and leg λ. In Figures 5 and 6, density correlations are shown for the

longest system computed and highest D reached, exhibiting near perfect symmetry S.
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Figure 5: Density profile of the longest system

computed
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Figure 6: Density profile of system with

highest value of D computed

Comparison between Maquis single and two-site

Figures 7 and 8 show the local density computed with single-site and two-site optimization

for moderate D. In both cases a small random initial state with D = 7 has been used. The

low symmetry in Figure 7 indicates that the single-site algorithm is trapped in a local energy

minimum. It was hoped, that the situation could be improved by using a better initial state,

obtained from imaginary time evolution, but these attempts were unsuccessful and did not lower

the value of S. Twosite optimization on the other hand led to a drastic improvement of S for

the same resource of D used. Due to the larger sparse matrix eigenvalue problem solved at

every site in two-site optimization, (d2D2 × d2D2) instead of (dD2 × dD2), where d is the local

site dimension, it is computationally more expensive than single-site optimization. It must be

noted however, that due to the larger matrix dimensions in the two-site optimization, a scaling

to more CPU cores could be achieved on shared memory architectures using OpenMP.

18

Example: doped Hubbard ladder
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Multi-grid approaches
• Standard method for partial differential equations: solve the system on different 

length scales

V (x)

V (x)

V (x)

Coarse grid
Global properties

Intermediate grids
Fine grid

Local properties

• Example: bosons with contact interaction in a shallow optical lattice

mailto:bauerb@phys.ethz.ch
mailto:bauerb@phys.ethz.ch


Bela Bauer - bauerb@cnsi.ucsb.eduMay 17, 2012

Multi-grid & MPS

A1 A2 A3 A4 A5 A6 A7 A8

T T T T

α1 α2β

σ1 σ2

σ̃

�A1
�A2

�A3
�A4

α1 α2
σ̃

�A
α2α1

T

�σ

σ1 σ2

�A
�

α2α1

σ2σ1

SVD

A1A2

β α2

σ2

α1

σ1

Restriction:

Prolongation:
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Multi-grid & MPS

Construct Hamiltonian for 
several discretizations

Perform DMRG

Prolongate state
Start on coarse grid

Perform DMRG

Restrict state
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MG-DMRG: results

• Convergence often much more reliable than standard DMRG approaches

• Key difference to tree tensor network: the final result is only an MPS on one layer

• Extension to lattice models: how to construct Hamiltonians for coarser lattice?

• CORE? Applying isometries to the MPO?
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Conclusion
• Convincing numerical evidence for three-sublattice order on both the square 

and the triangular lattice

• Completely different ordering mechanisms:

• Unique order at mean-field level on triangular lattice

• Quantum fluctuations select the three-sublattice order over other states on 
the square lattice

• Combination of two tensor-network states builds more trust in results

• Both iPEPS and 2d DMRG are valuable tools for understanding 2d systems

• MG-DMRG provides a way to converge MPS ground states reliably when 
system has various length scales
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