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◮ Carbon nanotubes: small cyllinders rolled up from graphene
sheet.

◮ What happens if we twist radially the nanotube?

◮ How will be affected observable quantities (e.g. local density
of states)?

◮ Will there appear bound states?

◮ Can we construct exactly solvable models to answer these
questions?



Dirac electrons in graphene

◮ tight-binding model
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◮ dispersion relation via tight-binding model (vectors ai related to the
geometry of the crystal)

E = ±γ
√

3 + 2 cos ka1 + 2 cos k.a2 + 2 cosk(a2 − a1)

◮ six points where E = 0, two of them
inequivalent, called Dirac points

◮ in the vicinity of E = 0, dispersion
relation is linear E ∼ |k|

◮ tight-binding hamiltonian reduces to
the first order operator for E ∼ 0

h = i∂xσ2 + i∂yσ1

massless Dirac hamiltonian



Carbon nanotubes

◮ specified by the circumference vector (chiral vector) Ch, it determines
its electronic properties

◮ quantization of momenta associated with the compactified coordinate

h = iσ1∂x + kyσ2



Deformations as (pseudo-)magnetic field
[Kane, Mele], [Vozmediano]

Displacement vector

d = (dx (x , y), dy (x , y))

Strain tensor

sxx = ∂xdx , syy = ∂ydy ,

sxy = syx =
∂xdy + ∂ydx
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d = (0, x), sxx = syy = 0, sxy = 1
Radially twisted nanotube - 1D Dirac Hamiltonian with vector potential

h = iσ2∂x +∆1(x)σ1

∆1(x) corresponds to the displacement d = (0,
∫

∆1(x)dx) of the
nanotube

The nanotube with the twist corresponding to dy ∼ x . In the
untwisted nanotube, the black line would be straight (horizontal).



◮ Primary objective: solvable models of twisted carbon nanotubes
◮ Secondary objective:

◮ local density of states (LDOS), the quantity measurable in STM
◮ Bound-state energies in depedence on the twist

Spectral tunneling microscopy (STM): tunneling current is a function of
the position of the tip, voltage and LDOS

STM, figure by Michael Schmid, TU
Wien

figure by Taner Yildirim, NIST



Darboux transformation L for Dirac Hamiltonians [Samsonov]

Analogy of Witten‘s construction for 1D Dirac Hamiltonian
Initial solvable Hamiltonian h = iσ2∂x + (∆1 +m)σ1
Transformation L is defined via two eigenvectors u1(2) of h,
hu1(2) = λ1(2)u1(2), λ1(2) ∈ R, Lu1(2) = 0

We fix λ1 = −λ2, u1 = (u11, u21)
T , u2 = σ3u1

L = 1∂x−
(

(ln u11)
′ 0

0 (ln u22)
′

)

, h̃ = iσ2∂x−
(

∆1 +m − λ1
u211 + u221
u11u21

)

σ1.

Then
h̃L = Lh

◮ h and h̃ are spectrally almost identical (assuming regular DT)
◮ possible difference: h̃ can have to two additional bound states with

energy E = ±λ1
Eigenstates of h̃ corresponding to λk 6= ±λ1,

φ̃k =
Lφk

√

(λk − λ1)(λk − λ2)
, h̃φ̃k = λk φ̃k .



Green’s function and LDOS for the twisted nanotubes
Green’s function for the initial system

(h − λ)G (x , y ;λ) = δ(x − y), λ ∈ C.

G (x , y ;λ) =
ψλ(x)ξλ(y)

T θ(x − y) + ξλ(x)ψλ(y)
T θ(y − x)

W (ψλ, ξλ)
,

where hψλ = λψλ, hξλ = λξλ for any λ ∈ C. Wronskian
W (ψ, ξ) = iψ(x)Tσ2ξ(x), ∂xW (ψλ, ξλ) = 0
Green‘s function for the new Hamiltonian h̃

G̃(x , y ;λ) =
ψ̃λ(x)ξ̃λ(y)

T θ(x − y) + ξ̃λ(x)ψ̃λ(y)
T θ(y − x)

W (ψ̃λ, ξ̃λ)

where λ 6= ±λ1 and h̃ψ̃λ = λψ̃λ, h̃ξ̃λ = λξ̃λ,

ψ̃λ =
Lψλ

√

(λ− λ1)(λ− λ2)
, ξ̃λ =

Lξλ
√

(λ− λ1)(λ− λ2)

Note: Wronskian satisfies W (ψ̃, ξ̃) = W (ψ, ξ)



Green’s function part II
The action of L on the eigenstates ψ of h can be simplified

ψ̃λ =
Lψ

√

(λ− λ1)(λ− λ2)
= L(λ, x)ψλ, L(λ, x) = −iσ2

λ− U(x)ΛU−1(x)
√

(λ− λ1)(λ− λ2)
,

where Λ = diag(λ1, λ2).
Green’s function G̃ (x , y ;λ) is then

G̃ (x , y ;λ) = L(λ, x)G (x , y ;λ)LT (λ, y).

It can be computed by purely algebraic means from G (x , y ;λ)!
LDOS for carbon nanotubes

ρ̃(x , λ) = − 1

π
lim

Imλ→0+

ImTr G̃(x , x ;λ).

It can be written as

ρ̃(x , λ) = − 1

π
lim

Imλ→0+

ImTr
(

L(λ, x)TL(λ, x)G (x , x ;λ)
)

.



The trace of G̃(x , x ;λ) is

Tr(G̃ (x , x ;λ)) = g0 +
2λ21g0(u

†
1u1)

2

(λ2 − λ21)(detUII )2

+
2λ21u

†
1u1

(λ2 − λ21)(detU)2

(

−g3u
†
1σ3u1 − g1

λ

λ1
u
†
1σ1u1

)

.

where gj = Tr(σjG (x , x ;λ)) for j = 0, .., 3, σ0 = 1.



Double-kink model
Initial (free-particle) and the new Hamiltonians

h = iσ2∂x +mσ1, h̃ = iσ2∂x + (m − k tanh kx + k tanh(kx + a))σ1.

The kernel of L consists of u1, u2 = σ3u1, hu1(2) = ±λ1u1(2)

u1 = (
1√
k
cosh kx ,

1√
k
cosh(kx + a))T

where a = 1
2 log

m−k
m+k

, k =
√

m2 − λ21, 0 < λ1 < m.

h̃ has two bound states v1 and v2,

v1 =

√
k

2
(sechkx , sech(kx+a))T , v2 = σ3v1 =

√
k

2
(sechkx ,−sech(kx+a))T .

The LDOS can be rewritten again in terms of LDOS of the free system ρ

and the probability density of the bound states

ρ̃(x , λ) = ρ(x , λ)

(

1− 2 k v †1v1
(λ2 − λ21)

)

,



Interpretation of the model

External constant magnetic flux ∆̃MG = m parallel with the axis of
the nanotube
The twisting part of the potential
∆̃T = −k tanh kx + k tanh(kx + a) → asymptotically vanishing
twist localized mainly at the origin

Figure: The nanotube associated with the Hamiltonian h̃ and the twist

corresponding to dy ∼ ln cosh(kx+a)
cosh kx . The constant part of the magnetic

field in h̃ can be attributed to the external magnetic field or to the
semi-conducting character of the nanotube.



Bound states in dependence on the asymptotic twist

◮ deformation

dy ∼ ln
cosh(kx + a)

cosh kx
, k =

√

m2 − λ21

◮ asymptotic twist in dependence on the bound states

δd = | lim
x→∞

dy − lim
x→−∞

dy | = 2|a| = − ln
m −

√

m2 − λ21

m +
√

m2 − λ21

.

Energies in dependence on the asymptotic twist
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Summary and Outlook

◮ the formulas for G̃ (x , y , λ) hold for quite general class of seed
Hamiltonians

◮ the operator h = iσ2∂x +∆1σ1 appears in the context of
◮ (1+1)dimensional Nambu-Jona-Lasinio (chiral Gross-Neveu)

model
◮ in the analysis of inhomogeneous superconductors
◮ in describtion of vortex in the extreme type-II superconductors
◮ describes fermions coupled to solitons in the linear molecules

(polyacetylene)
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