official title:

## Rotating Casimir systems: extracting rotation from vacuum fluctuations?

#### M. N. Chernodub

#### **CNRS**, University of Tours, France

Based on:

M.Ch., arXiv:1203.6588, arXiv:1207.???? (to appear this month) unofficial title:

# Perpetuum mobile of the fourth kind due to zero-point fluctuations

#### M. N. Chernodub

**CNRS**, University of Tours, France

Based on:

M.Ch., arXiv:1203.6588, arXiv:1207.???? (to appear this week)

#### Question: How does the Casimir energy fall?

Answer:

"... Casimir energy gravitates just as required by the equivalence principle, and therefore the inertial and gravitational masses of a system possessing Casimir energy  $E_{\rm C}$  are both  $E_{\rm C}/c^2$ ."

S. A. Fulling, K. A. Milton, P. Parashar, A. Romeo, K. V. Shajesh, J. Wagner, Phys. Rev. D 76, 025004 (2007).

Question:How does the Casimir energy rotate?Answer:It likes to rotate! ("The rotational vacuum effect")Naïve<br/>argument:Negative Casimir energy corresponds to a negative<br/>mass of zero-point fluctuations which – if they are<br/>rotating – should have a negative moment of inertia<br/>implying decrease of the zero-point energy as the<br/>angular frequency is increasing.

### The Casimir effect

H. B. G. Casimir, Proc. Ron. Ned. Akad. Wetensch., 51, 793 (1948)

Simplest version of the Casimir effect:

massless one-component scalar field
 in one spatial dimension
 on an interval with Dirichlet boundary conditions



## How to find the rotational energy of zero-point fluctuations?

Let us make a circle out of the interval:



### Rotational zero-point energy

Simplest case: a circle with the Dirichlet cut, massless scalar field



The energy density  $\mathcal{E}(x) = \langle T^{00}(x) \rangle$  can be computed via the Green's function  $G(x, x') = i \langle T\phi(x)\phi(x') \rangle$  as follows:

$$\langle T^{\mu\nu}(x)\rangle = \left(\partial^{\mu}\partial^{\prime\nu} - \frac{1}{2}g^{\mu\nu}\partial^{\lambda}\partial^{\prime}_{\lambda}\right) \frac{1}{i}G(x,x')\Big|_{x\to x'}$$

#### Energy density of zero-point fluctuations

Energy density:

$$\left\langle T^{00}(t,\varphi)\right\rangle = \left(\frac{\partial}{\partial t}\frac{\partial}{\partial t'} + \frac{1}{R^2}\frac{\partial}{\partial \varphi}\frac{\partial}{\partial \varphi'}\right)\frac{1}{2i}G(t,t';\varphi,\varphi')\bigg|_{\substack{t'\to t\\\varphi'\to\varphi}}$$

The Green's function satisfies the following equation:

$$\left(\frac{\partial^2}{\partial t^2} - \frac{1}{R^2}\frac{\partial^2}{\partial \varphi^2}\right)G(t,\varphi;t',\varphi') = \frac{1}{R}\delta(\varphi - \varphi')\delta(t - t')$$

with the boundary condition corresponding to rotation:

$$\phi(t,\varphi)\Big|_{arphi=[\Omega t]_{2\pi}}=0$$



#### The Green's function

$$G(t,t';\varphi,\varphi') = \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} \sum_{m=1}^{\infty} \frac{\phi_{\omega,m}(t,\varphi)\phi_{\omega,m}^{\dagger}(t',\varphi')}{\lambda_{\omega,m} - i\epsilon}$$
can be expressed via eigenfunctions
$$\phi_{m,\omega}(t,\varphi) = \sqrt{\frac{1}{\pi R}} \sin\left[\frac{m}{2}[\varphi - t\Omega]_{2\pi}\right] \exp\left\{-i\omega\left(t - \frac{\Omega R^2 [\varphi - t\Omega]_{2\pi}}{1 - \Omega^2 R^2}\right)\right\}$$
and eigenvalues
$$\lambda_{\omega,m} = \frac{1 - \Omega^2 R^2}{4R^2} m^2 - \frac{\omega^2}{1 - \Omega^2 R^2}$$
(orthonormal and complete system of eigenfunctions)

of the corresponding equation:

$$\left(\frac{\partial^2}{\partial t^2} - \frac{1}{R^2}\frac{\partial^2}{\partial \varphi^2}\right)\phi_{\omega,m}(t,\varphi) = \lambda_{\omega,m}\phi_{\omega,m}(t,\varphi)$$

## Green's function, explicitly

$$G_{\Omega}(t,t';\varphi,\varphi') = \frac{i}{\pi} \mathcal{G}\left(\frac{[\varphi - \Omega t]_{2\pi}}{2}, \frac{[\varphi' - \Omega t']_{2\pi}}{2}, \frac{[(1 - \Omega^2 R^2)(t - t') - \Omega R^2 \left([\varphi - \Omega t]_{2\pi} - [\varphi' - \Omega t']_{2\pi}\right)|}{2R}\right)$$

where

$$\begin{aligned} \mathcal{G}(x,y,z) &= \sum_{m=1}^{\infty} \frac{\sin(mx)\sin(my)}{m} e^{-imz} = \frac{1}{4} \ln \frac{\left[1 - e^{i(x+y-z)}\right] \left[1 - e^{-i(x+y+z)}\right]}{\left[1 - e^{i(x-y-z)}\right] \left[1 - e^{i(x+y-z)}\right]} \\ &= \frac{1}{4} \ln \left| \frac{\cos(x+y) - \cos z}{\cos(x-y) - \cos z} \right| - \frac{i}{8} ([z-x-y]_{2\pi} + [z+x+y]_{2\pi} - [z-x+y]_{2\pi} - [z+x-y]_{2\pi}) \end{aligned}$$

since

$$-\sum_{m=1}^{\infty} \frac{e^{imx}}{m} = \ln\left(1 - e^{ix}\right) \equiv \ln\left(2\left|\sin\frac{x}{2}\right|\right) + \frac{i}{2}\left([x]_{2\pi} - \pi\right)$$

## Time-splitting regularization:

Energy density:

$$\left\langle T^{00}(t,\varphi) \right\rangle = \frac{1}{2i} \lim_{t' \to t} \lim_{\varphi' \to \varphi} \left( \partial_t \partial'_t + \frac{1}{R^2} \partial_\varphi \partial'_\varphi \right) G(t,t';\varphi,\varphi')$$
  
=  $-\frac{1}{2\pi} \lim_{t' \to t} \frac{1}{(t'-t)^2} - \frac{1+\Omega^2 R^2}{96\pi R^2}$   
divergent finite

Physical energy density:  $\mathcal{E}_{\Omega}^{\text{ZP}}(t,\varphi) \equiv \left\langle T^{00}(t,\varphi) \right\rangle^{\text{phys}} = -\frac{1+\Omega^2 R^2}{96\pi R^2}$ 

Physical energy:

#### General features of rotational energy (I) The energy gets smaller with increase of angular frequency!

$$E_{\Omega}^{\rm ZP} = -\frac{1+R^2\Omega^2}{48R}$$



Note: this is a relativistic expression.

Energy of a classical rotating body:  $E_{\rm cl}(\Omega) = \frac{I_{\rm cl}\Omega^2}{2}$  positive Classical moment of inertia:  $I_{\rm cl} \equiv \frac{\partial^2 E_{\rm cl}}{\partial \Omega^2} = mR^2$ 

Moment of inertia of zero-poinf fluctuations

$$I^{\rm ZP} \equiv \frac{\partial^2}{\partial \Omega^2} E_{\Omega}^{\rm ZP} = -\frac{\hbar R}{24c} \qquad -\text{negative}$$

#### General features of rotational energy (II) The energy is unbounded from below.

$$E^{\rm ZP}_\Omega = -\frac{1+R^2\Omega^2}{48R}$$



Reason: mathematically (infinitely) thin circle. In a real, spatially extended device the energy is bounded.

Example: rotating long cylinder of radius *R* 





General features of rotational energy (III) The rotation of an isolated device is not self-accelerating! $E_{\Omega}^{\rm ZP} = -\frac{1+R^2\Omega^2}{48R}$ 

Physical reason: conservation of the angular momentum.

Check [following K. A. Milton, J. Phys. A **37**, R209 (2004)]:

The force acting on the Dirichlet cut:

$$\mathcal{F} = \frac{1}{R^2} \left( \langle T^{\varphi\varphi}(t,\varphi) \rangle \Big|_{\varphi = [\Omega t - 0]_{2t}} - \langle T^{\varphi\varphi}(t,\varphi) \rangle \Big|_{\varphi = [\Omega t + 0]_{2\pi}} \right)$$
  
does not  
depend on  $\varphi$   
$$\mathcal{F} = 0$$
 No force!

## General features of rotational energy (IV) It is very small!

An analog of the moment of inertia for zero-point fluctuations:

$$I^{\rm ZP} \equiv \frac{\partial^2}{\partial \Omega^2} E^{\rm ZP}_{\Omega} = -\frac{\hbar R}{24c}$$

In physical units:

$$I^{\rm ZP} = -2.2 \times 10^{-42} \cdot \left(\frac{R}{\rm m}\right) \cdot \rm kg \, m^2$$

... very-very small number ... can we make it larger?

#### Yes, we can!

Charged massless particles in magnetic field

Circle with the Dirichlet cut is pierced by a magnetic flux  $F_B$ 



Lagrangian:  $\Omega \qquad \mathcal{L} = [D_{\mu}\Phi]^* D^{\mu}\Phi \\ \equiv [D_t\Phi]^* D_t\Phi - \frac{1}{R^2} [D_{\varphi}\Phi]^* D_{\varphi}\Phi$ with the covariant derivative  $D_{\mu} = \partial_{\mu} - i e A_{\mu}$ Boundary condition at the cut:  $\Phi(t,\varphi)\bigg|_{t=0} = 0$ 

Symmetry:  $U(1): \Phi \to e^{ie\omega} \Phi, \quad A_{\mu} \to A_{\mu} + \partial_{\mu} \omega$ 

Using the gauge symmetry we choose the gauge potential in the form:

$$A_arphi = rac{\gamma_B}{e}\,, \qquad A_t = 0 \qquad ext{with} \qquad \gamma_B = rac{eF_B}{2\pi}$$

where  $F_B$  is the magnetic flux going through the circle:





## Eigensystem

#### Equation:

$$\left[\frac{\partial^2}{\partial t^2} - \frac{1}{R^2} \left(\frac{\partial}{\partial \varphi} - i\gamma_B\right)^2\right] \Phi_{\omega,m}(t,\varphi) = \Lambda_{\omega,m} \Phi_{\omega,m}(t,\varphi)$$

Eigenvalues:

$$\Lambda_{\omega,m} = \frac{1 - \Omega^2 R^2}{4R^2} m^2 - \frac{(\omega + \gamma_B \Omega)^2}{1 - \Omega^2 R^2}$$

**Eigenfunctions:** 

$$\Phi_{\omega,m}(t,\varphi) = \sqrt{\frac{1}{\pi R}} \sin\left(\frac{m}{2}[\varphi - t\Omega]_{2\pi}\right) \exp\left\{-i\omega t + i\frac{\gamma_B + \omega\,\Omega R^2}{1 - \Omega^2 R^2}[\varphi - t\Omega]_{2\pi}\right\}$$

where  $\gamma_B = \frac{eF_B}{2\pi}$ 

#### Green's function:



## **Emerging discontinuities**

Due to the dependence of the position of the poles on the angular frequency  $\Omega$  and on the magnetic flux  $F_B$ , the Green's function experiences discontinuities, which depend on the integer number:

$$\begin{split} M_{\Omega,B} &= \left\lfloor \frac{2\gamma_B \Omega R}{1 - \Omega^2 R^2} \right\rfloor = \left\lfloor \frac{\Omega R}{1 - \Omega^2 R^2} \frac{eF_B}{\pi} \right\rfloor \\ &\equiv \left\lfloor \frac{eB\Omega R^2}{c^2 - \Omega^2 R^3} \frac{c}{\hbar} \right\rfloor = \left\lfloor \frac{\Omega}{\Omega_{\rm ch}(B)} \frac{1}{1 - \Omega^2 R^2} \right\rfloor \end{split}$$

where the characteristic frequency is:

$$\Omega_{\rm ch}(B) = rac{\pi}{eF_BR} \equiv rac{\hbar c}{eBR^3}$$
 Magnetic flux  
 $F_B = \pi R^2 B$ 

Floor operation:  $\lfloor 0.1 \rfloor = 0, \lfloor 1.9 \rfloor = 1$ 

#### Technicalities, calculation of the Green's function

The integral involved in calculation of the Green's function,



where the eigenvalues 
$$\Lambda_{\omega,m} = \frac{1 - \Omega^2 R^2}{4R^2} m^2 - \frac{(\omega + \gamma_B \Omega)^2}{1 - \Omega^2 R^2}$$
 vanish.

We use the following property (valid for even vector  $f_m$  with  $f_m = f_{-m}$  and  $f_0 = 0$ ):

$$\int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \sum_{m=1}^{\infty} \frac{e^{-i\alpha\omega} f_m}{\Lambda_{\omega,m} - i\epsilon} = \int_{-\infty}^{\infty} \frac{d\omega}{4\pi} \sum_{m\in\mathbb{Z}}' \frac{e^{-i\alpha\omega} f_m}{\Lambda_{\omega,m} - i\epsilon}$$

$$= \frac{ie^{i\alpha\Omega\gamma_B}}{2\Omega_0} \sum_{m\in\mathbb{Z}}' f_m \frac{e^{-i\alpha\mu_m}}{m} \operatorname{sign}(\alpha) \Theta(\alpha\omega_m)$$

$$= \frac{ie^{i\alpha\Omega\gamma_B}}{2\Omega_0} \sum_{m=N_{\Omega,B}(\alpha)}^{\infty} \int_{-\infty}' \int_{-\infty}' f_m \frac{e^{-i|\alpha|\mu_m}}{m}$$

$$= \frac{ie^{i\alpha\Omega\gamma_B}}{2\Omega_0} \sum_{m=N_{\Omega,B}(\alpha)}^{\infty} \int_{-\infty}' \int_{-\infty}' f_m \frac{e^{-i|\alpha|\mu_m}}{m}$$

$$= \frac{ie^{i\alpha\Omega\gamma_B}}{2\Omega_0} \sum_{m=N_{\Omega,B}(\alpha)}^{\infty} \int_{-\infty}' \int_{-\infty}' f_m \frac{e^{-i|\alpha|\mu_m}}{m}$$

$$= \frac{ie^{i\alpha\Omega\gamma_B}}{2\Omega_0} \sum_{m=N_{\Omega,B}(\alpha)}^{\infty} \int_{-\infty}' f_m \frac{e^{-i|\alpha|\mu_m}}{m}$$

#### Green's function, explicitly

$$G_{\Omega,B}(t,t';\varphi,\varphi') = \frac{i}{\pi} e^{i\left(\Omega(t-t')+[\varphi-t\Omega]_{2\pi}-[\varphi'-t'\Omega]_{2\pi}\right)\gamma_{B}} \sum_{\substack{m=N_{\Omega,B}(\alpha) \\ \text{Magnetic flux} \\ \text{enters here}}} \int_{\substack{m=N_{\Omega,B}(\alpha) \\ \text{Magnetic flux} \\ \text{enters here}}} \int_{\substack{m=N_{\Omega,B}(\alpha) \\ \text{Magnetic flux} \\ \text{enters here}}} \int_{\substack{m=N_{\Omega,B}(\alpha) \\ \text{Magnetic flux} \\ \text{magnetic flux} \\ \gamma_{B} = \frac{eF_{B}}{2\pi}}} \int_{\substack{m=N_{\Omega,B}(\alpha) \\ \text{Magnetic flux} \\ \text{magnetic flux} \\ \gamma_{B} = \frac{eF_{B}}{2\pi}}} \int_{\substack{m=N_{\Omega,B}(\alpha) \\ \text{Magnetic flux} \\ \text{magnetic flux} \\ \gamma_{B} = \frac{eF_{B}}{2\pi}}} \int_{\substack{m=N_{\Omega,B}(\alpha) \\ \text{magnetic flux} \\ \text{magnetic flux} \\ \gamma_{B} = \frac{eF_{B}}{2\pi}}} \int_{\substack{m=N_{\Omega,B}(\alpha) \\ \text{magnetic flux} \\ \text{magnetic flux} \\ \gamma_{B} = \frac{eF_{B}}{2\pi}}} \int_{\substack{m=N_{\Omega,B}(\alpha) \\ \text{magnetic flux} \\ \text{magnetic flux} \\ \gamma_{B} = \frac{eF_{B}}{2\pi}}} \int_{\substack{m=N_{\Omega,B}(\alpha) \\ \text{magnetic flux} \\ \text{magnetic flux} \\ \gamma_{B} = \frac{eF_{B}}{2\pi}}} \int_{\substack{m=N_{\Omega,B}(\alpha) \\ \text{magnetic flux} \\ \text{magnetic flux} \\ \gamma_{B} = \frac{eF_{B}}{2\pi}}} \int_{\substack{m=N_{\Omega,B}(\alpha) \\ \text{magnetic flux} \\ \text{magnetic flux} \\ \gamma_{B} = \frac{eF_{B}}{2\pi}}} \int_{\substack{m=N_{\Omega,B}(\alpha) \\ \text{magnetic flux} \\ \text{magnetic flux} \\ \gamma_{B} = \frac{eF_{B}}{2\pi}}} \int_{\substack{m=N_{\Omega,B}(\alpha) \\ \gamma_{B} = \frac{eF_{B}}{2\pi}}} \int_{\substack$$

The Green's function for a neutral scalar particle (= in absence of the magnetic field)

$$G_{\Omega}(t,t';\varphi,\varphi') = \frac{i}{\pi} \mathcal{G}\left(\frac{[\varphi - \Omega t]_{2\pi}}{2}, \frac{[\varphi' - \Omega t']_{2\pi}}{2}, \frac{[(1 - \Omega^{2}R^{2})(t - t') - \Omega R^{2}([\varphi - \Omega t]_{2\pi} - [\varphi' - \Omega t']_{2\pi})]}{2R}\right)$$
  
with  $\mathcal{G}(x,y,z) = \sum_{m=1}^{\infty} \frac{\sin(mx)\sin(my)}{m} e^{-imz} = \frac{1}{4} \ln \frac{\left[1 - e^{i(x+y-z)}\right]\left[1 - e^{-i(x+y+z)}\right]}{\left[1 - e^{i(x+y-z)}\right]\left[1 - e^{i(x+y-z)}\right]}$ 

$$S[K_{m}, N] = \begin{cases} -\sum_{m=1}^{N-1} K_{m}, & N > 1 \\ 0, & N = 0, 1 \\ \sum_{m=N}^{-1} K_{m}, & N < 0 \end{cases} \qquad h_{m}(t, t'; \varphi, \varphi') = e^{-\frac{i(1-\Omega^{2}R^{2})}{2R}} |\alpha(t, t'; \varphi, \varphi')|^{m} \\ \cdot \frac{1}{m} \sin\left(\frac{m}{2}[\varphi - t\Omega]_{2\pi}\right) \sin\left(\frac{m}{2}[\varphi' - t'\Omega]_{2\pi}\right) \\ \alpha(t, t'; \varphi, \varphi') = t - t' - \frac{\Omega R^{2} \left([\varphi - t\Omega]_{2\pi} - [\varphi' - t'\Omega]_{2\pi}\right)}{1 - \Omega^{2}R^{2}} \end{cases}$$

#### Energy density of zero-point fluctuations (uniform rotation in magnetic field)

The stress-energy tensor:

$$\langle T^{\mu\nu}(x) \rangle = \left( D^{\mu} D'^{\nu*} + D^{\nu} D'^{\mu*} - g^{\mu\nu} D^{\lambda} D_{\lambda}'^* \right) \left. \frac{1}{i} G(x, x') \right|_{x \to x'}$$

The energy density:

$$\left\langle T^{00}(t,\varphi)\right\rangle = \left[\frac{\partial}{\partial t}\frac{\partial}{\partial t'} + \frac{1}{R^2}\left(\frac{\partial}{\partial\varphi} - i\gamma_B\right)\left(\frac{\partial}{\partial\varphi'} + i\gamma_B\right)\right]\frac{1}{i}G(t,t';\varphi,\varphi')\Big|_{\substack{t\to t'\\\varphi\to\varphi'}}$$

#### Explicit calculation gives us:

$$\mathcal{E}_{\Omega,B}^{\rm ZP} \equiv \left\langle T^{00} \right\rangle_{\Omega,B}^{\rm phys} = -\left[1 + 6M_{\Omega,B}(M_{\Omega,B} + 1)\right] \frac{1 + \Omega^2 R^2}{48\pi R^2}$$

with

$$M_{\Omega,B} \equiv \left\lfloor \frac{eB\Omega R^2}{c^2 - \Omega^2 R^3} \frac{c}{\hbar} \right\rfloor = \left\lfloor \frac{\Omega}{\Omega_{\rm ch}(B)} \frac{1}{1 - \Omega^2 R^2} \right\rfloor \text{ and } \Omega_{\rm ch}(B) = \frac{\pi}{eF_B R} \equiv \frac{\hbar c}{eBR^3}$$

#### **Energy of zero-point fluctuations** $E_{\Omega,B}^{\rm ZP} = -\left[1 + 6M_{\Omega,B}(M_{\Omega,B} + 1)\right] \frac{1 + \Omega^2 R^2}{24R}$ Strong enhancement of rotational energy Enhancement bands, illustration: $M_{\Omega,B} = \left\lfloor \frac{\Omega}{\Omega_{\rm ch}(B)} \frac{1}{1 - \Omega^2 R^2} \right\rfloor$ 1.4 = 1 cm1.2 $\equiv \left| \frac{eB\Omega R^2}{c^2 - \Omega^2 R^3} \frac{c}{\hbar} \right|$ 1.0 **H** 0.8 **e** 0.6 In nonrelativistic rotation, 0.4 the enhancement depends on the product $B \Omega$ only. Weak instability in 0.2 zeroth frequency band 0.0L $\Omega_{\rm ch}(B) = \frac{\pi}{eF_{\rm P}R} \equiv \frac{\hbar c}{eRR^3}$ 2 8 4 6 $\Omega, 1/s$



### Scales of enhancement

The enhancement factor:  $f(B) \equiv \frac{E_{\Omega,B}^{\rm ZP}}{E_{\Omega,B=0}^{\rm ZP}} \bigg|_{\Omega \gg \Omega_{\rm ch}(B)} = \frac{6}{(\Omega_{\rm ch}R)^2} \equiv 6 e^2 B^2 R^4$ 

#### Total energy, an example:



#### Perpetuum mobile of the fourth kind

If for some angular frequency  $\Omega$ 

$$E(\Omega \neq 0) < E(\Omega = 0)$$

then the ground state corresponds to a perpetual rotation.

Even in the presence of environment (e.g., of a thermal bath) the device will always tend to be in the rotating state, since it corresponds to the minimum of energy.



Our example corresponds to the most modest (10-fold) enhancement at the frequency

$$\Omega = \Omega_{\rm ch}$$

## Device made of doped carbon nanotubes?



Classical part of the total energy:

$$E_{\rm cl}(\Omega) = \frac{I_{\rm cl}\Omega^2}{2} \equiv \pi \mu R^3 \Omega^2$$

Moment of inertia of the device:

$$I_{\rm cl} \equiv \frac{\partial^2 E_{\rm cl}}{\partial \Omega^2} = m R^2 \,, \qquad m = 2\pi \mu R$$

Mass density per unit length

$$\mu = 3.24 \times 10^{-15} \, \mathrm{kg/m}$$

Speed of light  $\rightarrow$  Fermi velocity  $c \rightarrow v_F \approx 8.1 \times 10^5 \,\mathrm{m/s} \approx \frac{c}{300}$ 

### Nanotube torus

Zero-point energy:



 $\tau_{\rm min}(B=100{\rm T})\simeq 0.63\,{\rm s}\,,$ 

 $\tau_{\rm min}(B=1{\rm T})\simeq 6330\,{\rm s}\approx 1.75\,{\rm hrs}$ 

$$E_{\Omega,B}^{\text{ZP}} = -\left[1 + 6M_{\Omega,B}(M_{\Omega,B} + 1)\right] \frac{\Omega_0^2 v_F^2 + \Omega^2}{12\Omega_0 v_F} \hbar, \quad M_{\Omega,B} = \left\lfloor \frac{eB\Omega R^2}{v_F^2 - \Omega^2 R^2} \frac{v_F}{\hbar} \right\rfloor$$
  
Characteristic angular frequency:  $\Omega_{\text{ch}} = \frac{\hbar v_F}{eBR^3}$   
Physical units:  
 $\Omega_{\text{ch}} \simeq 3.35 \times 10^{-9} \left(\frac{B}{\text{T}}\right)^{-1} \left(\frac{R}{\text{m}}\right)^{-3} \text{s}^{-1}$   
Minimal radius needed for perpetual motion:  $\left(\frac{R_{\min}}{\text{m}}\right) \simeq 0.015 \left(\frac{B}{\text{T}}\right)^{-1}$   
One needs:  $R > R_{\min}$   
 $R_{\min}(B = 100\text{T}) \simeq 1.5 \times 10^{-4} \text{ m} \equiv 0.15 \text{ mm}$   
 $R_{\min}(B = 1\text{T}) \simeq 1.5 \times 10^{-2} \text{ m} \equiv 1.5 \text{ cm}$ .

Rotational time periods:

## Laws of thermodynamics: no contradiction

**First law** ("work from nothing is forbidden"): Our device produces no work, therefore its existence is consistent with the First Law.

**Second law** ("entropy of any isolated system not in thermal equilibrium increases"). For rotating systems this law gives the following condition for the thermal equilibrium:

$$\Omega = \left(\frac{\partial E}{\partial L}\right)_S$$

*"L"* is the angular momentum

"S" is the entropy (constant at T=0)

For any classical system E(L) is a convex function  $\rightarrow \Omega = 0$ 

Simplest example: the classical energy,  $E_{\rm cl} = \frac{L^2}{2I_{\rm cl}}$ , takes its minimum in the ground state,  $\frac{\partial E_{\rm cl}}{\partial L} = 0$ , thus  $\Omega = 0$ .

## Why the rotation of the device is possible in a thermal equilibrium?

Because the dependence of the zero-point energy on its angular momentum is a discontinuous function! (a situation, which is impossible in standard thermodynamics)



At the minimum,  $L=L_{\min}$ , the first derivative is nonzero:

$$\Omega = \lim_{L \to L_{\min} \pm 0} \left( \frac{\partial E}{\partial L} \right)_{S}$$

and the angular frequency is nonzero as well.

#### **Consistent with the Second Law.**

## Other works on perpetual motion:

- 1) Classical time crystals
  - Alfred Shapere and Frank Wilczek, [arXiv:1202.2537].

A proposal to make a permanently rotating state in classical and semiclassical systems, including traveling density waves.

- 2) Quantum time crystals, Frank Wilczek, [arXiv:1202.2539]. A proposal to make a permanently rotating system in quantum mechanics and in imaginary time.
- 3) Space-time crystals of trapped ions

Tongcang Li, Zhe-Xuan Gong, Zhang-Qi Yin, H. T. Quan, Xiaobo Yin, Peng Zhang, L.-M. Duan, and Xiang Zhang [arXiv:1206.4772]

A proposal to make a permanently rotating state in a cold ion system on a ring in magnetic field.

#### **Conclusions:**

- 1. We have calculated for a first time the rotational energy of the zero-point fluctuations.
- 2. We have demonstrated that this rotational energy may take its minimum at nonzero values of the angular frequency ("the rotational vacuum effect").
- 3. We have shown that the magnetic field should drastically (astronomically) enhance the energy of zero--point fluctuations at certain conditions.
- 4. We have proposed a general design of a device, for which a ground state is a rotating state. The device has no internally moving parts.
- 5. This device prefers to rotate forever even in the presence of an external environment ("perpetuum mobile of the fourth type").