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Structure of Supersymmetric Quantum Mechanics

Second order Hamiltonian operator, H = H'
First order supercharges, Q, = Q! , a = 1,2
Grading operator, [ = 03, [?=1

Lie Superalgebra:
[H7 Qa} — 07 {Qaa Qb} — 25abH

Grading relations:

U H] = A, Qa} =0



H=( g ) a=(g 4 ) e-ime

H =QQ, H=Q'Q, Q =L -W(), Hi=-5+W>FW,

H,Q.] =0 Q_H_=H.Q_, H_QT_ = QT_HJF, Darboux transformations,

H_ and H, are (almost) isospectral: energy levels £ > 0 of H are doubly
degenerate (in non-periodic case; bound states); level F/ = 0, if exists, is nonde-

generate.
U_ o QT_\LE, U, pox Q_V_pg, HV,p=EVypg



N = 2 supersymmetry can be realized in non-extended systems,
bosonized SUSY QM [MP, 1996, Ann. Phys. 245, 339]:

H = % (—dd—; W) — W’(:U)R) |

Q= —i (% + W(az)R) : Q2 = 1RQ)q,

W(—z) = —W(x) - odd superpotential, I' = R, R? = 1, — reflection (parity)
operator, Riy(x) = (—x), H is a nonlocal operator,

{Qu, Q) =200H, [Q.,H|=0, [R, H =0 {R Q,} =0.



Hidden nonlinear SUSY in harmonic parabosonic oscillator systems of the or-
derp=2(k+1), k=0,1,2..., and in a related two-body Calogero model with
exchange interaction [MP, 2000, Int. J. Mod. Phys. A 15, 3679]:

H = CL+CL_, Q-f- - (a+)2k+1H—7 Q— - (a_)2k+1H+7

[Q:b H} - 07 Q?}: - 07 {Q+7 Q—} - P2k+1(H)7
where II, = 3(1+ R) =cos’ F, 1. =3(1—R)=sin®F, F=7Z%{a",a },

{a™,a"},a%] = £2¢%, a"a’|0) =pl0), a|0) =0.

Parabose oscillator — 2-particle Calogero model ([a~,a*] = 1+ vR):

a =—(xF1iD,), iD,=———R, v=2k+1.
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Spectrum of the parabosonic oscillator system at v =5 (k =2, p = 6)



= Some non-extended, purely bosonic quantum mechanical systems with a
local Hamiltonian may have a hidden, bosonized supersymmetry [F. Correa, MP,
Ann. Phys. 2007, 322, 2493]:

Examples of the systems with a hidden, bosonized supersymmetry:
free particle, Dirac delta potential problem, bound state Aharonov-Bohm effect,
planar Aharonov-Bohm effect, finite-gap reflectionless Poschl-Teller system, finite-
gap periodic Lamé and associated Lamé systems

non-periodic Poschl-Teller and periodic Lamé systems are particular examples
of finite-gap systems related to the KdV equation; corresponding higher order Lax
operators play a role of one of the supercharges of the bosonized supersymmetry



Extended finite-gap systems: exotic supersymmetry

Second order extended (matrix) Hamiltonian, H
Two Lax operators = integrals of order 2n + 1
Two supercharges of order 2k and two supercharges of order 2(n — k) + 1
Alternatives for I’
= Exotic nonlinear supersymmetry reflects peculiarities of the spectrum:
e 2-fold degeneration of each of (2n + 1) edge band energies
e 4-fold degeneration of energy levels inside the allowed bands
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F. Correa, V. Jakubsky, L.M. Nieto, M.P., 2008, PRL, 101, 030403 :
Exotic supersymmetry can be realized by a non-relativistic electron in periodic
magnetic and electric fields of a special form

He — (px + Ax)z + (py + Ay)2 + U3Bz - ¢7
A, =0,A, =w(z), B, =% w(z) = aLn(dnz), ¢p(z) = fw?(z) + yw(x) + 6
=

HE = -4 1V (), Vi (@) = Vi (o + L),

k/Q
Voa(#) = =Cpd’zs = C——+c,  Cr=1{+1)

dn“x
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Figure 1: [ he blue dots and red triangles represent the band-edge states of H,,;.
The number of nodes of each band-edge state is indicated. For each setting,
the ground state is periodic. The lower order operator, () or (J_, annihilates the
band-edge states represented by triangles while the singlet states indicated by dots
are annihilated by the higher order operator.
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Super-extended system:
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[' = o03: a SUSY subalgebra generated by local integrals H, Z and

ol =9,, 9% =ir0.,

is identified as a centrally extended nonlinear N = 4 supersymmetry,

(o Q" —25p, (1), {0, Q" =26"P (H),
(@ 9"y =257z,
H, 0V =[H, 2] =2,0"] =0,

in which Z plays a role of the bosonic central charge.
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The supercharges ng) annihilate a part of band-edge states organized in super-
symmetric doublets, another part of supersymmetric doublets is annihilated by
Q(_a). The band-edge states which do not belong to the kernel of the supercharges
QS?) (or Q(_a)) are transformed (rotated) by these supercharges within the corre-
sponding supersymmetric doublet. The bosonic central charge Z annihilates all
the band-edge states.

= Spontaneously partially broken centrally extended nonlinear N = 4 supersym-
metry, cf. partial supersymmetry breaking in supersymmetric field theories with
BPS-monopoles.
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In some extended systems, the odd order supercharge is a matrix differential
operator of the first order that may be identified as a Dirac type Hamiltonian.

A corresponding system may be characterized then by the supersymmetric
structure with the first order matrix Hamiltonian.

= Such an exotic supersymmetry may be used to explain:

e Klein tunneling in carbon nanostructures: V. Jakubsky, L.-M- Nieto, MP, 2011,
PRD, 83, 047702

e some peculiarities of the kink-antikink and kink crystalline condensates in
the Gross-Neveu model (they appear, particularly, in the physics of conducting
polymers): MP, A. Arancibia, L.-M. Nieto, 2011, PRD, 83, 065025
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G. Semenoff (1984): tight binding description of graphene is reduced to the
2D massless Dirac equation in the low-energy approximation (the role of ¢ plays
vp ~ ¢/300)

boundary conditions single wall nanotubes: W(x + Cp) = V(x), where
Chn = n1a; + noay is a circumference (chiral) vector, a; and a, are the primi-
tive translation vectors of the Bravais lattice, n; 5 € Z.

Let Cy, be parallel to y = low energy behavior of charge carriers is approximated
by
Hoap = vp (—i010, + €09) ) = E |

where € = ( for metallic nanotubes and € = iﬁ for semiconducting nanotubes.
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For metallic nanotubes in the presence of impurities, and for the particles in
graphene normally incident on potential barrier V (z) (see Fig. 1):

va = (—z'vpal&,; + V([I?))w = E¢

([ Hy 0 (1 0
H‘(o HO)’ F_(O—l)'

Besides I', the Hamiltonian 7/ has two other symmetries,

T
u1=<° v ) U — i TUL,

Define

U 0

where U = U(x) is a unitary operator of a local chiral rotation,
U=¢e =cosal+isinaoy, a(x) = é [*V(r)dr.
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They satisfy relations
H, U, =0, {U, Uy} =261, [I',H]={,U,} =0.

Extended first order system composed from Hy and H, possesses the N = 2
zero-order supersymmetry extended by the central charge 1 and graded by I'.
Like in the non-relativistic case of a reflectionless system with the n-gap, second
order Hamiltonian, this structure underlies the absence of the backward scattering
in the O-gap system given by the first order Hamiltonian Hy, .
= The relation UHy = HyU, implied by [H,U,] =0 and the unitarity of U,
reveal the unitary equivalence of Hy with the free massless Dirac Hamiltonian
H,.
= the setting given by My is unitary equivalent to the free massless particle
system Hj and, hence, it shares its trivial scattering properties.
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Figure 2: For ¢k, = 0, the transmission coefficient 7' of the particle bouncing on the y-independent barrier
is equal to one. Thick black arrows illustrate the particle approaching and penetrating the barrier.
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In massive case (semiconducting nanotubes: m = € = 427 /|3Cy|; other than
normal incidence in graphene: m = 0k, # 0), unitary transformation of Hy yields

UHy = H,,U — 2vpmsin a o3,

where Hy, = H,,+ V', H,, = Hy + vpmos.

= the scale of supersymmetry breaking in the massive case is of the order of m,
and the contribution of the potential is controlled by the factor |sin | < 1.

= For the close-to-the-normal incidence (m = 6k, ~ 0), the potential barrier re-
mains almost perfectly transparent for any V' (z).

Conclusion: Klein tunneling in carbon nanostructures is explained by the exotic

SUSY with the first-order Hamiltonian and zero-order supercharge operators.
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Another exotic supersymmetric structure can be revealed in the first-order
finite-gap systemes.
Consider one-gap self-isospectral second-order Lamé system with the period 2K,

d2
H=diag(H(x—7),Hx+7)), H(x)= 3 + 2k*sn?(z|k) — K°.

T
Isospectral (displaced) subsystems H(x + 7) and H(x — 7) are related by an in-
tertwining operator, D(x; 7)H (x + 7) = H(x — 7)D(x; ), where
d 1
de F(x; 1)
F(x;7) = exp(xz(7))0(x — 7)/O(x +7), T # nK, 2(7) = Z(27 +iK') +igg,
describes eigenstates of H(x + 7) from the lower prohibited band with £ < 0.

D(x;7) = F(x;7)
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As a consequence, H possesses seven local integrals of motion:

o3 (zero order),

Sa, a=1,2, (first order),

Q., a=1,2, (second order),

L,, a=1,2, (third order, diagonal Lax operators).
All the six local integrals S, (), and L, are constructed in terms of the intertwin-
ing operator.

H has also six nonlocal integrals Ro,, To,, a=1,2, and RT o3, RT,
where R and T are the operators of reflections in x and 7.
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Figure 3: Spectrum of the periodic Bogoliubov-de Gennes system Hpgyo = 5.
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S1 plays a role of the Bogoliubov-de Gennes Hamiltonian, that describes kink-
antikink, or kink solutions (crystalline phases) of the Gross-Neveu model

Loy = Y(iy"0, — mo)p + %92@@0)2-

When 7 # (% +n)K, (mg # 0), there are 4 allowed bands in the spectrum of Sy;
for 7 = (5 4+ n)K, (my = 0), the middle gap disappears, and only three allowed
bands are left.

Ro is an integral for the first order Hamiltonian Hpy; = S1, which may be
identified as a grading operator I, I'? = 1.
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For 7 # (% + n)K, nontrivial odd integrals are £1 = Ly and Ly = iRo1 Ly,
{Roy,L,} =0, where i,y = diag(P(x + 7), P(x — 7)) is a third order Lax in-

tegral for Lamé self-isospectral system H,
P(zx) = d’/dx® + (1 + k* — 3k*sn’x)d/dx — 3k*snx cnz dn .
Nonlinear SUSY algebra:
Rov, Lo] = —2icly,  {Lar Lo} = 205P(S1,7),

where the six order spectral polynomial is

P(S1,7) = (83— £(r))(S? — e(r) — K?)(SF — e(r) — 1), e(r) = L&

sn2 27’
whose roots correspond to the energies of the six edge states of Hp,; = 5.
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For 7 = (% + n)K the system possesses other two integrals of motion, a local,
second order integral Q7 and nonlocal Q5 = i/RoQ4, which are odd with respect

to Roy, {Roy, 9.} =0,
T
Ql_i(_o y(az)))

V() 0
where Y(z) = (1/snxz_ Lsna ) (nay L1/may), 2o =z £ 1K
Integrals L, are not independent anymore, £, = —5;9,.

[RO’l, Qa] = —Qieabe, {Qaa Qb} - 25abPQ(Sl> )
where Po(S)) = (S2 — k'2)(52 — 1).
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L, are the supercharges for Hp,o which annihilate all the six edge eigenstates
of Hpgc = S1 in the case of 7 # (% + n)K. Anticommutator of supercharges is
the sixth order spectral polynomial in the Hamiltonian .5;.

For 7 = (% + n)K, supercharges Q, annihilate all the four edge states of 5 ;
L, = —519Q, annihilate the two zero energy eigenstates in the middle of the
central band. Anticommutator of the supercharges is the fourth order spectral
polynomial in the Hamiltonian S;.
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The cases 7 # ( +n)K and 7 = (5 + n)K correspond to mj # 0 and
my = 0 in the Gross-Neveu model Lagrangian

_ 1.

Loy = ("0, — mo)b + 592@1@2-
At zero value of the bare mass, my = 0, discrete chiral symmetry is restored there.
I = A restoration of the discrete chiral symmetry at zero value of the bare mass

in GN model, when the kink-antikink crystalline condensate transforms into the
kink crystal, is accompanied by structural changes of the exotic supersymmetry.
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The origin of the hidden supersymmetric structures in some systems via a non-
local Foldy-Wouthuysen transformation: V. Jakubsky, L.-M. Nieto, MP, 2010,
PLB, 692, 51

Exotic supersymmetry of finite-gap reflectionless Poschl-Teller system in the
light of Aharonov-Bohm effect and AdS/CFT holography: F. Correa, V. Jakubsky,
MP, 2009, Ann. Phys. 324, 1078

Exotic SUSY admits extension to PT symmetric quantum systems where it
sheds a new light on peculiar properties of the complexified Scarf |l potential
(which appears in quantum field theory in curved spacetimes, soliton theory in

nonlinear integrable systems and also in the physics of optical solitons) [F. Correa,
MP, 2012, Ann. Phys. 327, 1761]
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