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Lie transformations
The problem of Lie symmetries of ordinary differential equations (ODE) is
rather old, and S. Lie gave the main results at the end of the nineteenth
century. One of these results was that a second order differential equation

y ′′ = F (x , y , y ′)

has the maximal number of Lie symmetries (SL(3,R)) if it can be
transformed to the free equation by a point transformation:

y ′′ = F (x , y , y ′)
x̃ = x̃(x, y)
ỹ = ỹ(x, y)

=⇒ ỹ ′′ = 0

The condition for this linearization is that the ODE must be of the form:

y ′′ = E3(x , y)(y ′)3 + E2(x , y)(y ′)2 + E1(x , y)y ′ + E0(x , y) (1)

with Ei (x , y) satisfying some integrability conditions.
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This has a nice geometric interpretation in terms of projective geometry:

• EDO (1) ⇔ geodesic equations in a 2-dim Riemannian manifold.
• Ei (x , y) ≈ Thomas projective parameters Π.
• integrability conditions ⇔ Riemann tensor = 0

V.I. Arnold named this process rectification or straightening of the
trajectories, and studied the case of Linear Second Order Differential
Equation (LSODE), giving explicitely the point transformation for this
case.
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Classical Arnold transformation

General Linear Second Order Differential Equation (LSODE):

ẍ + ḟ ẋ + ω2x = Λ

A : R× T → R× T
(x , t) 7→ (κ, τ)

:

{
τ = u1(t)

u2(t)

κ =
x−up(t)
u2(t)

,

ẍ + ḟ ẋ + ω2x = Λ
A−→ W

u3
2

κ̈ = 0

• T and T are, in general, open intervals
• u1 and u2 are independent solutions of the homogeneous LSODE
• up is a particular solution of the inhomogeneous LSODE
• W (t) = u̇1u2 − u1u̇2 = e−f is the Wronskian of the two solutions
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The example of the harmonic oscillator
The harmonic oscillator (HO) is the best example to understand how the
CAT works. For this case, and considering Λ = 0

• Classical solutions are: u1(t) = 1
ω sin(ωt) and u2(t) = cos(ωt).

• T = (− π
2ω ,

π
2ω ) and T = R.

• A and its inverse A−1 are written as:

A : κ =
x

u2(t)
=

x

cos(ωt)
, τ =

u1(t)

u2(t)
=

1

ω
tan(ωt) (2)

A−1 : x = cos(arctan(ωτ))κ , t =
1

ω
arctan(ωt) . (3)

=
κ√

1 + ω2τ 2
(4)
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Figure: Depiction of the CAT
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Hamiltonian for a LSODE

H =
p2

2m
e−f +

(1

2
mω2x2 −mΛx

)
ef

Canonical quantization leads to:

Generalized Caldirola-Kanai equation

i~
∂φ

∂t
= − ~2

2m
e−f

∂2φ

∂x2
+
(1

2
mω2x2 −mΛx

)
ef φ

• No eigenvalue equation makes sense: Ĥ does not preserve solutions!
• Auxiliary operators, representing integrals of motion, are employed

to solve the equation. Where do they come from?

→Quantum Arnold Transformation is very relevant to understand all this.
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Quantum free particle and its symmetries

Free Schrödinger equation:

i~
∂ϕ

∂τ
= − ~2

2m

∂2ϕ

∂κ2

Symmetries: the (centrally extended) Galilei group + scale and
“conformal” transformations = the Schrödinger group.

• Basic conserved position and momentum operators:

κ̂ = κ+
i~
m
τ
∂

∂κ
, π̂ = −i~

∂

∂κ

• Represent constants of motion.
• Generate symmetries.
• Preserve the Hilbert space of solutions: HG

τ .

(So do the quadratic operators, including ĤG = − ~2

2m
∂2

∂κ2 ).
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Quantum Arnold Transformation Â

Â : Ht −→ HG
τ

φ(x , t) 7−→ ϕ(κ, τ) = Â
(
φ(x , t)

)
= A∗

(√
u2(t) e

− i
2

m
~

1
W (t)

u̇2(t)

u2(t) x
2

φ(x , t)
)

• ϕ(κ, τ) ∈ HG
τ : solution of the free Schrödinger equation.

• φ(x , t) ∈ Ht : solution of the Generalized Caldirola-Kanai (GCK)
Schrödinger equation.
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(
φ(x , t)

)
= A∗

(√
u2(t) e

− i
2

m
~

1
W (t)

u̇2(t)

u2(t) x
2

φ(x , t)
)

• ϕ(κ, τ) ∈ HG
τ : solution of the free Schrödinger equation.

• φ(x , t) ∈ Ht : solution of the Generalized Caldirola-Kanai (GCK)
Schrödinger equation.

11 / 34



Arnold Transformation Applications Generalizations Related works

Quantum Arnold Transformation Â

HG
τ

Â←−−−− Ht

ÛG (τ)

x xÛ(t)

HG
0 ≡ H −−−−→

1̂
H ≡ H0

• We can relate time-dependent Schrödinger equations.

• Also basic operators in each space (as well as quadratic ones).

• Crucial consequence: realization of the free symmetry on the
non-free system.

The Hamiltonians are not connected by this transformation!
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HG
τ
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Basic operators

Imported from the free particle system through the QAT:

P̂ = −i~u2
∂

∂x
−mx

u̇2

W

X̂ =
u̇1

W
x +

i~
m

u1
∂

∂x

Together with the quadratic ones P̂2, X̂ 2, X̂P:

• represent conserved quantities!

• are symmetry generators!

• their eigenvalue equations make sense!

These imported operators can be used to solve the Generalized
Caldirola-Kanai Schrödinger equation.
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Simplify computations: Wave functions

Combination of the quadratic operators in the Schrödinger algebra:

Ĥ∗ =
1

2m
P̂2 +

1

2
mω̃2X̂ 2 +

γ̃

2
X̂P (ω̃, γ̃ arbitrary real constants)

• Eigenfunctions of Ĥ∗ (normalizability conditions must be imposed!):

φν(x , t) = 1√√
2πΓ(ν+1)

√
(u2−γ̃u1/2)2+Ω̃2u2

1

e
i

2~mx2
( Ω̃2u1/(u2−γ̃u1/2)

(u2−γ̃u1/2)2+Ω̃2u2
1

+
u̇2−γ̃u̇1/2

(u2−γ̃u1/2)W

)
(

u2−γ̃u1/2−iΩ̃u1√
(u2−γ̃u1/2)2+Ω̃2u2

1

)ν+ 1
2

(
C1Dν

( √
2mΩ̃
~ x√

(u2−γ̃u1/2)2+Ω̃2u2
1

)
+C2D−1−ν

( i

√
2mΩ̃
~ x√

(u2−γ̃u1/2)2+Ω̃2u2
1

))

• Dν : parabolic cylinder functions

• C1 and C2 arbitrary constants

• Ω̃ =

√
ω̃2 − γ̃2

4

• ν in general a complex number

• Spectrum:
h∗ = ~ Ω̃ (ν + 1

2 )
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Simplify computations: Evolution operator

HG
τ

Â←−−−− Ht

ÛG (τ)

x xÛ(t)

HG
0 ≡ H −−−−→

1̂
H ≡ H0

Û(t)ψ(x) = Â−1
(
ÛG (τ)ψ(κ)

)

Û(t) ≡ Û(t, t0)

= e
i
2

m
~

1
W

u̇2
u2

x2

A∗−1
(
ÛG (τ)

)
ÛD( 1

u2
)

= e
i
2

m
~

1
W

u̇2
u2

x2

e
i~
2m u1u2

∂2

∂x2 e log(1/u2)(x ∂
∂x + 1

2 )

= e i(α(t)P̂2+β(t)X̂ 2+δ(t)D̂)

Note that Û(t, t0)6=e−
i
~ (t−t0)Ĥ . It is not a one-parameter Lie group of

unitary operators. It’s just a one-dimensional Lie groupoid!
15 / 34



Arnold Transformation Applications Generalizations Related works

Simplify computations: Evolution operator

HG
τ
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ÛG (τ)

x xÛ(t)
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Humps
Use QAT to connect the free particle to the harmonic oscillator of
frequency ω (changed notation!):

t =
u1(t ′)

u2(t ′)
t ′ =

1

ω
arctan(ωt) (u1(t ′) =

1

ω
sin(ωt ′))

x =
x ′

u2(t ′)
x ′ = cos(arctan(ωt))x =

x√
1 + ω2t2

(u2(t ′) = cos(ωt ′))

We import eigenfunctions of the Hamiltonian of the harmonic oscillator:

Free Hermite-Gauss states in dimension 1

ψn(x , t) =
(2π)−

1
4√

2nn!L|δ|
e
−

x2

4L2δ

(
δ∗

|δ|

)n+ 1
2

Hn(
x√

2L|δ|
) ,

δ ≡ 1 + iωt = 1 + i ~t
2mL2 = 1 + it/τ , Hn: Hermite polynomials
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Humps in dimension 1

x

 Ψ0Hx, tL¤2

x

 Ψ1Hx, tL¤2

x

 Ψ2Hx, tL¤2

t3

t2

t1

t0

Figure: Spreading under time evolution of wave functions ψ0, ψ1 and ψ2, with
tk = kτ .

• They are not eigenstates of the free Hamiltonian.
• Import creation and annihilation operators:

â = Lδ
∂

∂x
+

x

2L
â† = −Lδ∗

∂

∂x
+

x

2L
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Humps in dimension 2: Laguerre-Gauss states
Import from the HO eigenstates of ĤHO and the angular momentum L̂:

L̂ψn,l(r , φ, t) = lψn,l(r , φ, t) (L|l|n : Laguerre polynomials)

Free Laguerre-Gauss states

ψn,l(r , φ, t) =
√

n!
2πΓ(n+|l|+1)L2|δ|

(
δ∗

|δ|

)2n+|l|+1

eilφe−
r2

4L2δ

(
r√

2L|δ|

)|l|
L|l|n ( r2

2L2|δ|2 )

Figure: |ψ0,1|2 Figure: |ψ1,1|2 19 / 34
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Wave function for Squeezed Coherent States (HO)

Displacement operator: D̂(a) = eaâ†−a∗â

(Radial) squeezing operador: Ŝ(ξ) = e
1
2 (ξ∗â2−ξ(â†)2)

a =
√

mω
2~ x0 + i 1√

2m~ωp0, ξ = r ∈ R.

|n, ξ, a〉 = D̂(a)Ŝ(ξ)|n〉

Time-evolving Squeezed Coherent State wave function for the
HO

ϕ′n(a,r)(x ′, t ′) =
(mω

~π

) 1
4 1√

2nn!

(
|δ′|
|δ′r |

) 1
2
(
δ′r
∗

|δ′r |

)n+ 1
2

eiθ(x′,t′)e−q′2/2Hn(q′)

δ′ = 1 + i tan(ωt ′), δ′r = 1 + ie2r tan(ωt ′)

q′ =

√
mω
~ (x′−x0 cos(ωt′)− p0

mω sin(ωt′))

(e2r sin2(ωt′)+e−2r cos2(ωt′))1/2 θ(x ′, t ′) : huge. . .
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Wave function for Squeezed Coherent States (free particle)
To perform the QAT, we use the “dictionary”:

ωt ′ → tan−1(ωt) x ′ → x
|δ|

cos(ωt ′) → 1
|δ| sin(ωt ′) → ωt

|δ|
δ′ → δ δ′r → δr = 1 + ie2rωt

ϕ → ψ = 1√
|δ|

e
iωt x2

4L2|δ|2 ϕ

q′ → q =
x − x0 + p0

m τ√
2Le−r |δr |

Free time-evolving Squeezed State wave function

ψn
(a,r)(x , t) =

(mω

~π

) 1
4 1√

2nn!

1√
|δr |

(
δr
∗

|δr |

)n+ 1
2

eiωt
x2

4L2|δ|2 eiθ(x,t)e−q2/2Hn(q)

• Time-evolution can be transferred from one quadratic system to
another by QAT.
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QAT and density matrices
• The density matrix ρ̂′ of a mixed GCK oscillator state can be

mapped into the density matrix ρ̂ of a mixed free particle state:

ρ̂ = Âρ̂′Â†

• The unitarity of Â guaranties that ρ̂ is a proper density matrix,
provided that ρ̂′ is.

• If ρ̂′ satisfies the quantum Liouville equation for the GKC oscillator
then ρ̂ satisfies the free particle counterpart (use the evolution
operator):

∂ρ̂′

∂t
= − i

~
[Ĥ, ρ̂′] ⇒ ∂ρ̂

∂τ
= − i

~
[ĤG , ρ̂]

• All the properties of ρ̂′ are transferred to ρ̂, such as characteristic
functions, quasi probability distributions, etc. In particular, if ρ̂′

describes a Gaussian state, also ρ̂ does.
• However a thermal equilibrium state the GCK oscillator is not

mapped to a free particle thermal equilibrium state.
• It would be interesting to apply the QAT to Kossakovsky-Lindblad

type equations, and study open systems under the QAT point of
view.
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The Arnold-Ermakov-Pinney transformation
• Two arbitrary LSODE systems can be related composing a CAT and

an inverse CAT:
E = A−1

1 A2 relates LSODE-system 2 to LSODE-system 1. E can be
written as:

E :R× T2 → R× T1

(x2, t2) 7→ (x1, t1) = E (x2, t2)

• The explicit form of the transformation can be easily computed by
composing the two CATs, resulting in:

x1 =
x2

b(t2)
W1(t1)dt1 =

W2(t2)

b(t2)2
dt2

• where b(t2) =
u

(2)
2 (t2)

u
(1)
2 (t1)

satisfies the non-linear SODE:

b̈ + ḟ2ḃ + ω2b =
W 2

2

W 2
1

1

b3

[
ω2

1 + ḟ1
u̇

(1)
2

u
(1)
2

(1− b2 W1

W2
)

]
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The Arnold-Ermakov-Pinney transformation and BEC
• For the particular case where LSODE-system 1 is a harmonic

oscillator (ω1(t1) ≡ ω0 and ḟ1 = 0), these expression symplify:

b̈ + ḟ2ḃ + ω2b =
W 2

2

b3
ω2

0

and this is the Generalized Ermakov-Pinney equation. For ḟ2 = 0 the
Ermakov-Pinney equation is recovered.

• For ω0 = 0, E = A.
• The quantum version of the Arnold-Ermakov-Pinney transformation,

Ê , is given by:

Ê : H(2)
t2
−→ H(1)

t1

φ(x2, t2) 7−→ ϕ(x1, t1) =Ê
(
φ(x2, t2)

)
=E∗

(√
b(t2) e

− i
2

m
~

1
W2(t2)

ḃ(t2)

b(t2) x
2
2φ(x2, t2)

)
• This transformation has been extensively used in BEC, known as

scaling transformation to transform the time-dependent potential
(oscillator traps with time-dependent frequencies) into a
time-independent harmonic oscillator potential.
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Equation of motion of the Inflaton
The simplest inflationary models consists of an empty universe in which
there exists a self-interacting scalar field which finds itself in a very flat
region of its potential (“slow roll” approximation). In this configuration
the expansion of the universe is dominated by the potential energy
density of the scalar field and the expansion proceeds exponentially, like
in a de Sitter universe. The action that describes this system is

S =
1

16πG

∫
d4x
√
−gR − 1

2

∫
d4x
√
−g [∂µφ∂

µφ+ 2V (φ)] (5)

The equation of motion for this field is:

�φ− V ′(φ) = 0 (6)

Assuming a sufficiently large homogeneous and isotropic patch in the
universe, the metric in that patch can be written in the usual FRLW form.
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The scalar field equation then becomes

φ̈+ 3Hφ̇+ V ′(φ) = 0 (7)

This is the equation of a non-linear oscillator with a (approx. constant)
damping term. Exactly solvable models are obtained when V (φ) is
exponential, or when V (φ) is quadratic (corresponding to a damped
harmonic oscillator), that is used to model the last epoch of inflation
(known as reheating).
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Quatum fluctuations of the metric
The CMB anisotropies are explained by the stretching of the quantum
fluctuations of the metric. Assuming a flat FRLW metric, the fluctuation
hij they are ds2 = −dt2 + a(t)(δij + hij)dx idx j satisfy the linearized
Einstein equations:

ḧij + 3Hḣij −∇hij = 0 (8)

Expanding hij in Fourier modes as usual hij =
∫
d3kh~k(t)eije

i~k·~x , we
obtain the equation for each mode:

ḧ~k + 3Hḣ~k +
k2

a2
h~k = 0 (9)
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Since at the beginning of inflation the size of the universe was so small,
and the quantum fluctuations were dominant, the fluctuations hij must
be treated as a quantum field and its normal modes as quantum damped
harmonic oscillators.
Thus, all the discussion concerning the Caldirola-Kanai and Bateman
systems apply here.
In particular, and due to the necessarily autonomous character of the
Universe evolution, a quantum treatment “à la Bateman” is specially in
order. This would mean that an extra “mirror” fluctuations field is
required.
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Generalizations
• Extend the QAT to the relativistic case. Two possible directions:

1. As the quantum version of a CAT for geodesic equations in a fixed
background and with external forces.

2. As the quantum version of Geodesic Mappings, that transforms
geodesic of a metric into geodesic of a different metric (Beltrami
Theorem).

• Extend the QAT to non-linear potentials → Quantum Lie
Transformation. Second order Ricatti equation.

• Extend the QAT to non-local potentials, like Gross-Pitaevskii
equation.
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Related Works
• Lewis & Riesenfeld (1969) introduced a technique to obtain

solutions of the time dependent Schrödinger equation (TDSE) for a
time dependent quadratic Hamiltonian (TDQH) as eigenfunctions of
quadratic invariants. For that purpose they wrote the solutions in
terms of auxiliary variables that satisfy the classical equations of
motion (something that resembles the CAT)

• Dodonov & Man’ko (1979) constructed invariant operators for the
damped harmonic oscillator and introduced coherent states, using a
method similar to that of Lewis and Riesenfeld.

• Jackiw (1980) gave the quantum transformation from the harmonic
oscillator (even with a 1/x2 term) to the free particle when studying
the symmetries of the magnetic monopole.

• Duru & Kleinert (1982) gave the transformation of the propagator,
in a path integral appoach, for the hidrogen atom into the harmonic
oscillator one (this could be seen as the Quantum KS
transformation).
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• Junker & Inomata (1985) gave the transformation of the propagator,
in a path integral approach, for an arbitrary quadratic potential, into
the free propagator (the equivalent of the QAT).

• Takagi (1990) gave the quantum transformation from the harmonic
oscillator to the free particle, interpreted as the change to comoving
coordinates.

• Bluman & Shtelen (1996) gave the (non-local) transformation of the
TDSE for a TDQH plus a non-linear term into the free particle one,
in the context of transformations of PDEs.

• Kagan et al. and independently Castin & Dum (1996) introduced a
scaling transformation in the Gross-Pitaevskii equation describing
Bose-Einstein Condensates (BEC) which is related to the QAT.

• Suslov et al. (2010) computed the propagator for a time-dependent
quadratic Hamiltonian using the classical equations. Later (2011)
they use the transformation point of view which can be considered
equivalent to our QAT.
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