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Motivations

Understand the quantization procedure and the classical limit of
quantum mechanics

Alternative to deal with symmetries and constraints

Motivational examples: the gravitational field may be regarded
as a constrained particle moving on the infinite-dimensional
space of metrics (superspace); the configuration space of a
Yang-Mills theory is that of a particle moving on the
infinite-dimensional space A

/
G ,where A is the space of smooth

connections on some bundle and G is the corresponding group
of local gauge transformations.
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The algebraic structure of mechanics

Let L be a real vector space equipped with two algebraic operations
∗s and ∗a from L × L to L.

Classical mechanics is the space of smooth functions on some
Poisson manifold P

L = C∞(P)

f ∗s g = fg pointwise product
f ∗a g = {f , g} Poisson bracket.
Quantum mechanics is the space of self-adjoint operators L = Bsa on
some Hilbert space H (closed under operator multiplication) with
a ∗s b = 1

2 (ab + ba) anticommutator (Jordan product)

a ∗a b = iλ
2 (ab − ba) scaled commutator (Lie bracket).
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The algebraic structure of mechanics

Abstracting the properties of ∗s and ∗a we are led to the following
axioms (a2 = a ∗s a):

a ∗s b = b ∗s a (symmetry)

a ∗a b = −b ∗a a (anti-symmetry)

a ∗a (b ∗a c) + c ∗a (a ∗a b) + b ∗a (c ∗a a) = 0 (Jacobi identity)

(a2 ∗s b) ∗s a = a2 ∗s (b ∗s a) (weak associativity)

a ∗a (b ∗s c) = (a ∗a b) ∗s c + b ∗s (a ∗a c) (Liebniz rule)

(a ∗s b) ∗s c − a ∗s (b ∗s c) = ~ b ∗a (c ∗a a), for some ~ ∈ R+
0

(associator identity)

These axioms define the so-called Lie–Jordan algebra.
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The algebraic structure of mechanics

The case ~ = 0 represents the classical algebra of observables. This
means ∗s is an associative product in classical mechanics (associative
Lie–Jordan algebra).

In the case of Quantum Mechanics ~λ = 1
4 .

One can always define an associative product on L ⊗ C = L+ iL by
putting

a ∗ b = a ∗s b − i
√
~ a ∗a b

but this product lacks direct physical meaning, as the product of two
observable operators fails to be observable.
The observables are closed under ∗s and ∗a.
The symmetric product ∗s leads to spectral calculus and the
antisymmetric ∗a expresses the dual role of observables: as
observable and as generators of dynamics.
In the following ∗s will be denoted by ◦ and ∗a by [·, ·].
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Space of states and Jordan–Banach
algebras

The state space S of the quantum system does not determine
univocally the C∗ structure of the algebra of observables but only its
Jordan–Banach real algebra.

It follows from results of Kadison (Kadison, A representation theory for

commutative topological algebra, Mem. Amer. Math. Soc. 1951) that the
self-adjoint part of a C*–algebra is isometrically isomorphic, as an
ordered normed linear space, to the space of all w*-continuous affine
functions on the state space.
In view of this, characterizing the self-adjoint part of a C∗–algebra is
equivalent to characterizing the state space of a C∗–algebra.
Then the question of when a given Jordan–Banach algebra is the real
part of a C∗–algebra raises. A. Connes and Alfsen & Shultz gave
different answers:
A. Connes, Charactérisation des espaces vectoriels ordonnés sous-jacent aux

algébres de von Neumann, Ann. Inst. Fourier (Grenoble) 24 (1974), 121. E. M.

Alfsen, F. W. Shultz, On Orientation and Dynamics in Operator Algebras. Part I,

Commun. Math. Phys. 194 (1998) 87.
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Jordan–Banach algebras and Order
Derivations

A Jordan–Banach algebra is a Jordan algebra (L, ◦) with a complete
norm ‖ · ‖ such that ∀ a, b ∈ L:

i) ‖a ◦ b‖ ≤ ‖a‖ ‖b‖
ii) ‖a2‖ = ‖a‖2
iii) ‖a2‖ ≤ ‖a ◦ a + b ◦ b‖

A unital JB–algebra L is a complete order unit space with respect to
the positive cone

L+ = { a2 | a ∈ L}.

Definition

A bounded linear operator δ on a JB–algebra L is called an order
derivation if exptδ(L+) ⊂ L+, ∀ t ∈ R.

Define the linear operator δb by δb(a) = b ◦ a.

Definition

An order derivation δ on a unital JB–algebra L is self-adjoint if there
exists a ∈ L such that δ = δa and is skew-adjoint if δ(1) = 0.
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Definition

A bounded linear operator δ on a JB–algebra L is called an order
derivation if exptδ(L+) ⊂ L+, ∀ t ∈ R.

Define the linear operator δb by δb(a) = b ◦ a.

Definition

An order derivation δ on a unital JB–algebra L is self-adjoint if there
exists a ∈ L such that δ = δa and is skew-adjoint if δ(1) = 0.
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Definition (Dynamical Correspondence)

A dynamical correspondence on a unital JB–algebra L is a linear map
ψ : a→ ψa from L into the set of skew order derivations on L s.t.

i) ∃κ ∈ R such that κ [ψa, ψb] = − [δa, δb] , ∀ a, b ∈ L, and

ii) ψaa = 0, ∀ a ∈ L

Lemma

Let (L, [·, ·]L , ◦) be a LJB–algebra. Then exp[a,·]L is a Jordan
automorphism ∀ a ∈ L.

Lemma

Let (L, [·, ·]L , ◦) be a LJB–algebra. Then [a, ·]L is an order
derivation on L ∀ a ∈ L.
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Theorem

Let L be a unital JB–algebra. There exists a dynamical
correspondence ψ on L if and only if L is a LJB–algebra with Lie
product [·, ·]L such that

[a, b]L = ψab

Corollary

A unital JB–algebra L is Jordan isomorphic to the self-adjoint part of
a C∗–algebra if and only if it is a LJB–algebra.
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Reduction of C*–algebras

Field algebra F and self-adjoint constraint set C.

Physical state space (Dirac states):

SD ≡ {ω ∈ S(F) | ω(C 2) = 0, ∀C ∈ C }

Let D = [FC] ∩ [CF ]. D is a subalgebra of F and is the largest

non-unital C∗–algebra in
⋂
ω∈SD

ker ω. The multiplier algebra of D

O = {F ∈ F | FH ∈ D and HF ∈ D, ∀H ∈ D }

i.e. the largest set for which D is a bilateral ideal corresponds to the
Lie normalizer of D.
It follows that the maximal C∗–algebra of physical observables
determined by the constraints C is

F̃ = O/D.
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Reduction of Lie–Jordan algebras

Let L be a LJB–algebra (L, ◦, [·, ·]L).
Consider a closed Jordan ideal J :

∀a ∈ L, ∀x ∈ J , x ◦ a ∈ J

Then the quotient space
L̃ = L

/
J

inherits a canonical LJB–algebra structure with respect to the
quotient norm

‖ã‖ = inf
b∈J
‖a + b‖
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Equivalence between the reduction of
LJB– and C*– algebras

Lemma

Let Z and I be two Lie-Jordan subalgebras of a LJB V. Then
ZC = Z ⊕ iZ is the Lie normalizer of IC = I ⊕ iI if and only if Z is the
Lie normalizer of I, i.e. Z = NI .

Lemma

Let Z and I be two Lie-Jordan subalgebras of V. Then I is a Lie–Jordan
ideal of Z if and only if IC = I ⊕ iI is an associative bilateral ideal of
ZC = Z ⊕ iZ.

Theorem

Let F = L ⊕ iL be the field algebra of the quantum system and C a real
constraint set. Let D = [FC]∩ [CF ], O = DW and F̃ = O/D = L̃ ⊕ iL̃ be
the reduced field algebra. Then:

L̃ = NJ /J ,

with NJ and J being the s.a. part of O and D respectively, i.e.
O = NJ ⊕ iNJ and D = J ⊕ iJ .
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Is there a more general reduction?

A more general way to reduce a Lie–Jordan algebra L is to consider a
linear subspace B ⊂ L and quotient it with respect to another
subspace S ⊂ L s.t. S ∩ B 6= {0}.
Which are the conditions to be imposed on B and S such that
B
/
B ∩ S is a Lie–Jordan algebra?

The new products ◦′ and [·, ·]′ on B
/
B ∩ S are

a′ ◦′ b′ ≡ ã ◦ b̃ + S

[a′, b′]′ ≡ [ã, b̃] + S ,

where a′ = ã + S and b′ = b̃ + S with ã, b̃ ∈ B. For the definitions
to make sense we must require:

B ◦ B ⊂ B + S [B,B] ⊂ B + S

B ◦ B ∩ S ⊂ S [B,B ∩ S ] ⊂ S

But they do not satisfy in general the compatibility conditions.
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Is there a more general reduction?

Observe that the linear space B + S can be decomposed as a direct
sum:

B + S = B ∩ S ⊕ Σ⊕ Γ,

with Σ ⊂ B, Σ ∩ S = {0} and Γ ⊂ S , Γ ∩ B = {0}. From this
decomposition we can also write

B = B ∩ S ⊕ Σ,

and then
B + S = B ⊕ Γ.
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A new framework for Quantum
Anomalies?

Theorem

Let (L, ◦, [·, ·]) be a Lie–Jordan algebra and B and S two subsets
such that B ∩ S 6= {0}. Then ( B

/
B ∩ S , ◦′, [·, ·]′) is a Lie–Jordan

algebra if and only if there exist a subset Γ ⊂ S such that
B + S = B ⊕ Γ and the following conditions are satisfied:

B ◦ B ⊂ B ⊕ Γ [B,B] ⊂ B ⊕ Γ

B ◦ B ∩ S ⊂ S [B,B ∩ S ] ⊂ S

B ◦ Γ ⊂ S [B, Γ] ⊂ S

(1)

If we imagine that S represents a symmetry which is not preserved at
the quantum level (quantum anomaly), then conditions (1) tell us
that twe can still construct a good algebra of observables by
satisfying those properties.
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Super Lie–Jordan Banach algebras

Graded Lie–Jordan Banach algebra L =
⊕
g
Lg together with two

bilinear operations preserving the grading:

◦ : L × L → L

and
[·, ·] : L × L → L

such that:

a ◦ b = (−1)|a||b|b ◦ a (supercommutative superalgebra)

(a2 ◦ b) ◦ a = a2 ◦ (b ◦ a) (weak associativity)

[a, b] = −(−1)|a||b|[b, a]
[a, [b, c]] + [c , [a, b]] + (−1)|a||b|[b, [c , a]] = 0 (Lie superalgebra)

[a, b ◦ c] = [a, b] ◦ c + (−1)|a||b|b ◦ [a, c] (superderivation)

(a ◦ b) ◦ c − a ◦ (b ◦ c) = k [b, [c , a]], for some k ∈ R+

(associator identity)
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Super Lie–Jordan Banach algebras
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Super Lie–Jordan Banach algebras

Examples:

A Lie–Jordan Banach algebra L0 is clearly an example of super
Lie–Jordan Banach algebra of degree 0.

Given a Lie group G with Lie algebra g, the exterior algebra
Λ(g⊕ g∗) possess a Super(-associative) LJB–algebra structure
with associative Jordan multiplication given by the wedge
product and the Lie bracket defined for X ,Y ∈ g and α, β ∈ g∗

by
[α,X ] = α(X ) = [X , α] [X ,Y ] = 0 = [α, β].

We then extend it to all of Λ(g⊕ g∗) as an odd derivation.
It is a Z–graded SLJB–algebra with elements of g having degree
−1 and elements of g∗ having degree +1.
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Action of a group on a Super
Lie–Jordan Banach algebra

Let G be a Lie group acting on a SLJB–algebra L, that is it exists a
map:

ĝ : G → Aut(L)

which assigns to each element g of the group, an automorphism of
the algebra U(g).

It is also possible to define the action of the Lie algebra g on the
LJB–algebra L. Let a ∈ L and ξ ∈ g, then

ξ(a) =
d

ds
U(expsξ)(a) |s=0

This action is a derivation of the algebra, that is:

ξ(a ◦ b) = ξ(a) ◦ b + a ◦ ξ(b)

and then by the previous theorem on Jordan derivations there exists
J ∈ L such that ∀a ∈ L,

ξ(a) = [J, a].
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Super Lie–Jordan Banach algebras

Tensor products of Super LJB–algebras: Given two SLJB–algebras P
and Q, their tensor product P ⊗ Q can be given the structure of a
SLJB–algebra.

∀a, b ∈ P and u, v ∈ Q we define

(a⊗ u) ◦ (b ⊗ v) = (−1)|u||b|a ◦ b ⊗ u ◦ v

[a⊗ u, b ⊗ v ] = (−1)|u||b|([a, b]⊗ [u, v ])

These operations satisfy the axioms of a SLJB–algebra.
Example:
C = L ⊗ Λ(g⊕ g∗) is a Z–graded SLJB–algebra:
C =

⊕
n
Cn =

⊕
i−j=n

C i,j =
⊕

i−j=n

Λi (g∗)⊗ Λj (g)⊗ L

Although the bigrading is preserved by the exterior product, the Lie
bracket does not preserve it, infact

[C i,j , Ck,l ] ⊂ C i+k,j+l ⊕ C i+k−1,j+l−1

but the total degree is preserved.



Lie–Jordan
Banach

algebras and
Quantum
Reduction

Leonardo
Ferro

The algebraic
structure of
mechanics

Lie–Jordan
Banach
algebras and
dynamical cor-
respondence

Quantum
Reduction

Supersymmetric
extension of
Lie–Jordan
Banach
algebras

Super Lie–Jordan Banach algebras

Tensor products of Super LJB–algebras: Given two SLJB–algebras P
and Q, their tensor product P ⊗ Q can be given the structure of a
SLJB–algebra.
∀a, b ∈ P and u, v ∈ Q we define

(a⊗ u) ◦ (b ⊗ v) = (−1)|u||b|a ◦ b ⊗ u ◦ v

[a⊗ u, b ⊗ v ] = (−1)|u||b|([a, b]⊗ [u, v ])

These operations satisfy the axioms of a SLJB–algebra.
Example:
C = L ⊗ Λ(g⊕ g∗) is a Z–graded SLJB–algebra:
C =

⊕
n
Cn =

⊕
i−j=n

C i,j =
⊕

i−j=n

Λi (g∗)⊗ Λj (g)⊗ L

Although the bigrading is preserved by the exterior product, the Lie
bracket does not preserve it, infact

[C i,j , Ck,l ] ⊂ C i+k,j+l ⊕ C i+k−1,j+l−1

but the total degree is preserved.



Lie–Jordan
Banach

algebras and
Quantum
Reduction

Leonardo
Ferro

The algebraic
structure of
mechanics

Lie–Jordan
Banach
algebras and
dynamical cor-
respondence

Quantum
Reduction

Supersymmetric
extension of
Lie–Jordan
Banach
algebras

Super Lie–Jordan Banach algebras

Tensor products of Super LJB–algebras: Given two SLJB–algebras P
and Q, their tensor product P ⊗ Q can be given the structure of a
SLJB–algebra.
∀a, b ∈ P and u, v ∈ Q we define

(a⊗ u) ◦ (b ⊗ v) = (−1)|u||b|a ◦ b ⊗ u ◦ v

[a⊗ u, b ⊗ v ] = (−1)|u||b|([a, b]⊗ [u, v ])

These operations satisfy the axioms of a SLJB–algebra.
Example:
C = L ⊗ Λ(g⊕ g∗) is a Z–graded SLJB–algebra:
C =

⊕
n
Cn =

⊕
i−j=n

C i,j =
⊕

i−j=n

Λi (g∗)⊗ Λj (g)⊗ L

Although the bigrading is preserved by the exterior product, the Lie
bracket does not preserve it, infact

[C i,j , Ck,l ] ⊂ C i+k,j+l ⊕ C i+k−1,j+l−1

but the total degree is preserved.



Lie–Jordan
Banach

algebras and
Quantum
Reduction

Leonardo
Ferro

The algebraic
structure of
mechanics

Lie–Jordan
Banach
algebras and
dynamical cor-
respondence

Quantum
Reduction

Supersymmetric
extension of
Lie–Jordan
Banach
algebras

Super Lie–Jordan Banach algebras

Tensor products of Super LJB–algebras: Given two SLJB–algebras P
and Q, their tensor product P ⊗ Q can be given the structure of a
SLJB–algebra.
∀a, b ∈ P and u, v ∈ Q we define

(a⊗ u) ◦ (b ⊗ v) = (−1)|u||b|a ◦ b ⊗ u ◦ v

[a⊗ u, b ⊗ v ] = (−1)|u||b|([a, b]⊗ [u, v ])

These operations satisfy the axioms of a SLJB–algebra.
Example:
C = L ⊗ Λ(g⊕ g∗) is a Z–graded SLJB–algebra:
C =

⊕
n
Cn =

⊕
i−j=n

C i,j =
⊕

i−j=n

Λi (g∗)⊗ Λj (g)⊗ L

Although the bigrading is preserved by the exterior product, the Lie
bracket does not preserve it, infact

[C i,j , Ck,l ] ⊂ C i+k,j+l ⊕ C i+k−1,j+l−1

but the total degree is preserved.



Lie–Jordan
Banach

algebras and
Quantum
Reduction

Leonardo
Ferro

The algebraic
structure of
mechanics

Lie–Jordan
Banach
algebras and
dynamical cor-
respondence

Quantum
Reduction

Supersymmetric
extension of
Lie–Jordan
Banach
algebras

Super Lie–Jordan Banach algebras

Tensor products of Super LJB–algebras: Given two SLJB–algebras P
and Q, their tensor product P ⊗ Q can be given the structure of a
SLJB–algebra.
∀a, b ∈ P and u, v ∈ Q we define

(a⊗ u) ◦ (b ⊗ v) = (−1)|u||b|a ◦ b ⊗ u ◦ v

[a⊗ u, b ⊗ v ] = (−1)|u||b|([a, b]⊗ [u, v ])

These operations satisfy the axioms of a SLJB–algebra.

Example:
C = L ⊗ Λ(g⊕ g∗) is a Z–graded SLJB–algebra:
C =

⊕
n
Cn =

⊕
i−j=n

C i,j =
⊕

i−j=n

Λi (g∗)⊗ Λj (g)⊗ L

Although the bigrading is preserved by the exterior product, the Lie
bracket does not preserve it, infact

[C i,j , Ck,l ] ⊂ C i+k,j+l ⊕ C i+k−1,j+l−1

but the total degree is preserved.



Lie–Jordan
Banach

algebras and
Quantum
Reduction

Leonardo
Ferro

The algebraic
structure of
mechanics

Lie–Jordan
Banach
algebras and
dynamical cor-
respondence

Quantum
Reduction

Supersymmetric
extension of
Lie–Jordan
Banach
algebras

Super Lie–Jordan Banach algebras

Tensor products of Super LJB–algebras: Given two SLJB–algebras P
and Q, their tensor product P ⊗ Q can be given the structure of a
SLJB–algebra.
∀a, b ∈ P and u, v ∈ Q we define

(a⊗ u) ◦ (b ⊗ v) = (−1)|u||b|a ◦ b ⊗ u ◦ v

[a⊗ u, b ⊗ v ] = (−1)|u||b|([a, b]⊗ [u, v ])

These operations satisfy the axioms of a SLJB–algebra.
Example:
C = L ⊗ Λ(g⊕ g∗) is a Z–graded SLJB–algebra:
C =

⊕
n
Cn =

⊕
i−j=n

C i,j =
⊕

i−j=n

Λi (g∗)⊗ Λj (g)⊗ L

Although the bigrading is preserved by the exterior product, the Lie
bracket does not preserve it, infact

[C i,j , Ck,l ] ⊂ C i+k,j+l ⊕ C i+k−1,j+l−1

but the total degree is preserved.



Lie–Jordan
Banach

algebras and
Quantum
Reduction

Leonardo
Ferro

The algebraic
structure of
mechanics

Lie–Jordan
Banach
algebras and
dynamical cor-
respondence

Quantum
Reduction

Supersymmetric
extension of
Lie–Jordan
Banach
algebras

Super Lie–Jordan Banach algebras

Tensor products of Super LJB–algebras: Given two SLJB–algebras P
and Q, their tensor product P ⊗ Q can be given the structure of a
SLJB–algebra.
∀a, b ∈ P and u, v ∈ Q we define

(a⊗ u) ◦ (b ⊗ v) = (−1)|u||b|a ◦ b ⊗ u ◦ v

[a⊗ u, b ⊗ v ] = (−1)|u||b|([a, b]⊗ [u, v ])

These operations satisfy the axioms of a SLJB–algebra.
Example:
C = L ⊗ Λ(g⊕ g∗) is a Z–graded SLJB–algebra:
C =

⊕
n
Cn =

⊕
i−j=n

C i,j =
⊕

i−j=n

Λi (g∗)⊗ Λj (g)⊗ L

Although the bigrading is preserved by the exterior product, the Lie
bracket does not preserve it, infact

[C i,j , Ck,l ] ⊂ C i+k,j+l ⊕ C i+k−1,j+l−1

but the total degree is preserved.



Lie–Jordan
Banach

algebras and
Quantum
Reduction

Leonardo
Ferro

The algebraic
structure of
mechanics

Lie–Jordan
Banach
algebras and
dynamical cor-
respondence

Quantum
Reduction

Supersymmetric
extension of
Lie–Jordan
Banach
algebras

Supercharge and BRST Reduction

A superderivation of degree k is a linear map D : Cn → Cn+k s.t.

D(a◦b) = (Da)◦b+(−1)k|a|a◦(Db), D[a, b] = [Da, b]+(−1)k|a|[a,Db].

The map a→ [Q, a] for some Q ∈ Ck is a superderivation.

The total differential D = [Q, ·], where Q ∈ C1 is given explicitly by:

Q = Jiθ
i − 1

2
c i

jkθ
j ∧ θk ∧ Xi

where Xi (antighosts) is a basis of g with [Xi ,Xj ] = ck
ij Xk and θi

(ghosts) is a basis for g∗.It is also verified that [Q,Q] = 0 which is
equivalent to D2 = 0 and then we have defined our graded complex
(C,D).

Theorem (BRST reduction)

The zero-th class cohomology of the graded complex (C,D) is given
by

H0
D(C) = NJ

/
J
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