Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebrai Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetri extension of Lie-Jordan Banach algebras

# LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

Leonardo Ferro

Mathematical Structures in Quantum Systems and Applications, Benasqe 2012

10 luglio 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetri) extension of Lie–Jordan Banach algebras

#### **1** The Algebraic Structure of Mechanics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetri( extension of Lie-Jordan Banach algebras

#### **1** The algebraic structure of mechanics



#### 2 LIE–JORDAN BANACH ALGEBRAS AND DYNAMICAL CORRESPONDENCE

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetrie extension of Lie–Jordan Banach algebras

#### **1** The algebraic structure of mechanics

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

2 LIE–JORDAN BANACH ALGEBRAS AND DYNAMICAL CORRESPONDENCE

**3** QUANTUM REDUCTION

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetrie extension of Lie–Jordan Banach algebras

#### **1** The algebraic structure of mechanics

. '

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL CORRESPONDENCE

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

QUANTUM REDUCTION
 Reduction of C\*-algebras

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COF RESPONDENCE

Quantum Reduction

Supersymmetri) extension of Lie–Jordan Banach algebras

#### **1** The algebraic structure of mechanics



2 LIE–JORDAN BANACH ALGEBRAS AND DYNAMICAL CORRESPONDENCE

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- **3** QUANTUM REDUCTION
  - Reduction of C\*-algebras
  - Reduction of Lie–Jordan algebras

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetri extension of Lie–Jordan Banach algebras

#### **1** The algebraic structure of mechanics



- 2 LIE–JORDAN BANACH ALGEBRAS AND DYNAMICAL CORRESPONDENCE
- **3** QUANTUM REDUCTION
  - Reduction of C\*-algebras
  - Reduction of Lie–Jordan algebras



SUPERSYMMETRIC EXTENSION OF LIE–JORDAN BANACH ALGEBRAS

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras

#### **1** The algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL CORRESPONDENCE

#### **3** QUANTUM REDUCTION

- Reduction of C\*-algebras
- Reduction of Lie–Jordan algebras



SUPERSYMMETRIC EXTENSION OF LIE–JORDAN BANACH ALGEBRAS

Joint work with F. Falceto, A. Ibort and G. Marmo.

## MOTIVATIONS

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie-Jordan Banach algebras • Understand the quantization procedure and the classical limit of quantum mechanics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

## MOTIVATIONS

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras • Understand the quantization procedure and the classical limit of quantum mechanics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Alternative to deal with symmetries and constraints

## MOTIVATIONS

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras

- Understand the quantization procedure and the classical limit of quantum mechanics
- Alternative to deal with symmetries and constraints
- Motivational examples: the gravitational field may be regarded as a constrained particle moving on the infinite-dimensional space of metrics (superspace);

## Motivations

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetri extension of Lie-Jordan Banach algebras

- Understand the quantization procedure and the classical limit of quantum mechanics
  - Alternative to deal with symmetries and constraints
- Motivational examples: the gravitational field may be regarded as a constrained particle moving on the infinite-dimensional space of metrics (superspace); the configuration space of a Yang-Mills theory is that of a particle moving on the infinite-dimensional space  $\mathcal{A}/G$ , where  $\mathcal{A}$  is the space of smooth connections on some bundle and G is the corresponding group of local gauge transformations.

## THE ALGEBRAIC STRUCTURE OF MECHANICS

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetri( extension of Lie–Jordan Banach algebras Let  $\mathcal{L}$  be a real vector space equipped with two algebraic operations  $*_s$  and  $*_a$  from  $\mathcal{L} \times \mathcal{L}$  to  $\mathcal{L}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

## THE ALGEBRAIC STRUCTURE OF MECHANICS

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetri) extension of Lie–Jordan Banach algebras Let  $\mathcal{L}$  be a real vector space equipped with two algebraic operations  $*_s$  and  $*_a$  from  $\mathcal{L} \times \mathcal{L}$  to  $\mathcal{L}$ . Classical mechanics is the space of smooth functions on some Poisson manifold P

$$\mathcal{L}=C^\infty(P)$$

 $f *_s g = fg$  pointwise product  $f *_a g = \{f, g\}$  Poisson bracket.

Lie-Jordan Banach Algebras ane Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetrie extension of Lie–Jordan Banach algebras Let  $\mathcal{L}$  be a real vector space equipped with two algebraic operations  $*_s$  and  $*_a$  from  $\mathcal{L} \times \mathcal{L}$  to  $\mathcal{L}$ . Classical mechanics is the space of smooth functions on some Poisson manifold P

$$\mathcal{L} = C^{\infty}(P)$$

 $\begin{array}{l} f \ast_s g = fg \text{ pointwise product} \\ f \ast_a g = \{f,g\} \text{ Poisson bracket.} \\ \text{Quantum mechanics is the space of self-adjoint operators } \mathcal{L} = \mathcal{B}_{sa} \text{ on} \\ \text{some Hilbert space } \mathcal{H} \text{ (closed under operator multiplication) with} \\ a \ast_s b = \frac{1}{2}(ab + ba) \text{ anticommutator (Jordan product)} \\ a \ast_a b = \frac{i\lambda}{2}(ab - ba) \text{ scaled commutator (Lie bracket).} \end{array}$ 

## THE ALGEBRAIC STRUCTURE OF MECHANICS

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetrie extension of Lie–Jordan Banach algebras Abstracting the properties of  $*_s$  and  $*_a$  we are led to the following axioms ( $a^2 = a *_s a$ ):

## THE ALGEBRAIC STRUCTURE OF MECHANICS

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetrie extension of Lie–Jordan Banach algebras Abstracting the properties of  $*_s$  and  $*_a$  we are led to the following axioms  $(a^2 = a *_s a)$ :

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

•  $a *_s b = b *_s a$  (symmetry)

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetrie extension of Lie–Jordan Banach algebras Abstracting the properties of  $*_s$  and  $*_a$  we are led to the following axioms ( $a^2 = a *_s a$ ):

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $a *_s b = b *_s a$  (symmetry)
- $a *_a b = -b *_a a$  (anti-symmetry)

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras Abstracting the properties of  $*_s$  and  $*_a$  we are led to the following axioms  $(a^2 = a *_s a)$ :

- $a *_s b = b *_s a$  (symmetry)
- $a *_a b = -b *_a a$  (anti-symmetry)
- $a *_a (b *_a c) + c *_a (a *_a b) + b *_a (c *_a a) = 0$  (Jacobi identity)

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras Abstracting the properties of  $*_s$  and  $*_a$  we are led to the following axioms  $(a^2 = a *_s a)$ :

- $a *_s b = b *_s a$  (symmetry)
- $a *_a b = -b *_a a$  (anti-symmetry)
- $a *_{a} (b *_{a} c) + c *_{a} (a *_{a} b) + b *_{a} (c *_{a} a) = 0$  (Jacobi identity)

•  $(a^2 *_s b) *_s a = a^2 *_s (b *_s a)$  (weak associativity)

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE—JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetrie extension of Lie–Jordan Banach algebras Abstracting the properties of  $*_s$  and  $*_a$  we are led to the following axioms  $(a^2 = a *_s a)$ :

- $a *_s b = b *_s a$  (symmetry)
- $a *_a b = -b *_a a$  (anti-symmetry)
- $a *_a (b *_a c) + c *_a (a *_a b) + b *_a (c *_a a) = 0$  (Jacobi identity)

- $(a^2 *_s b) *_s a = a^2 *_s (b *_s a)$  (weak associativity)
- $a *_a (b *_s c) = (a *_a b) *_s c + b *_s (a *_a c)$  (Liebniz rule)

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE—JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetri) extension of Lie–Jordan Banach algebras Abstracting the properties of  $*_s$  and  $*_a$  we are led to the following axioms ( $a^2 = a *_s a$ ):

- $a *_s b = b *_s a$  (symmetry)
- $a *_a b = -b *_a a$  (anti-symmetry)
- $a *_a (b *_a c) + c *_a (a *_a b) + b *_a (c *_a a) = 0$  (Jacobi identity)
- $(a^2 *_s b) *_s a = a^2 *_s (b *_s a)$  (weak associativity)
- $a *_a (b *_s c) = (a *_a b) *_s c + b *_s (a *_a c)$  (Liebniz rule)
- (a \*<sub>s</sub> b) \*<sub>s</sub> c − a \*<sub>s</sub> (b \*<sub>s</sub> c) = ħ b \*<sub>a</sub> (c \*<sub>a</sub> a), for some ħ ∈ ℝ<sup>+</sup><sub>0</sub> (associator identity)

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

Quantum Reduction

Supersymmetri extension of Lie–Jordan Banach algebras Abstracting the properties of  $*_s$  and  $*_a$  we are led to the following axioms ( $a^2 = a *_s a$ ):

- $a *_s b = b *_s a$  (symmetry)
- $a *_a b = -b *_a a$  (anti-symmetry)
- $a *_a (b *_a c) + c *_a (a *_a b) + b *_a (c *_a a) = 0$  (Jacobi identity)
- $(a^2 *_s b) *_s a = a^2 *_s (b *_s a)$  (weak associativity)
- $a *_a (b *_s c) = (a *_a b) *_s c + b *_s (a *_a c)$  (Liebniz rule)
- $(a *_s b) *_s c a *_s (b *_s c) = \hbar b *_a (c *_a a)$ , for some  $\hbar \in \mathbb{R}_0^+$ (associator identity)

These axioms define the so-called Lie–Jordan algebra.

## THE ALGEBRAIC STRUCTURE OF MECHANICS

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetri( extension of Lie-Jordan Banach algebras The case  $\hbar = 0$  represents the classical algebra of observables. This means  $*_s$  is an associative product in classical mechanics (associative Lie–Jordan algebra).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

### THE ALGEBRAIC STRUCTURE OF MECHANICS

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras The case  $\hbar = 0$  represents the classical algebra of observables. This means  $*_s$  is an associative product in classical mechanics (associative Lie–Jordan algebra).

In the case of Quantum Mechanics  $\hbar \lambda = \frac{1}{4}$ . One can always define an associative product on  $\mathcal{L} \otimes \mathbb{C} = \mathcal{L} + i\mathcal{L}$  by putting

$$a * b = a *_s b - i\sqrt{\hbar} a *_a b$$

but this product lacks direct physical meaning, as the product of two observable operators fails to be observable.

The observables are closed under  $*_s$  and  $*_a$ .

The symmetric product  $*_s$  leads to spectral calculus and the antisymmetric  $*_a$  expresses the dual role of observables: as observable and as generators of dynamics.

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras The case  $\hbar = 0$  represents the classical algebra of observables. This means  $*_s$  is an associative product in classical mechanics (associative Lie–Jordan algebra).

In the case of Quantum Mechanics  $\hbar \lambda = \frac{1}{4}$ . One can always define an associative product on  $\mathcal{L} \otimes \mathbb{C} = \mathcal{L} + i\mathcal{L}$  by putting

$$a * b = a *_s b - i\sqrt{\hbar} a *_a b$$

but this product lacks direct physical meaning, as the product of two observable operators fails to be observable.

The observables are closed under  $*_s$  and  $*_a$ .

The symmetric product  $*_s$  leads to spectral calculus and the antisymmetric  $*_a$  expresses the dual role of observables: as observable and as generators of dynamics. In the following  $*_s$  will be denoted by  $\circ$  and  $*_a$  by  $[\cdot, \cdot]$ .

# Space of states and Jordan–Banach algebras

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

Quantum Reduction

Supersymmetri( extension of Lie-Jordan Banach algebras The state space S of the quantum system does not determine univocally the  $\mathbb{C}^*$  structure of the algebra of observables but only its Jordan–Banach real algebra.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

# Space of states and Jordan–Banach algebras

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

Quantum Reduction

Supersymmetri extension of Lie–Jordan Banach algebras The state space S of the quantum system does not determine univocally the  $\mathbb{C}^*$  structure of the algebra of observables but only its Jordan–Banach real algebra.

It follows from results of Kadison (Kadison, A representation theory for commutative topological algebra, Mem. Amer. Math. Soc. 1951) that the self-adjoint part of a  $\mathbb{C}^*$ -algebra is isometrically isomorphic, as an ordered normed linear space, to the space of all w\*-continuous affine functions on the state space.

In view of this, characterizing the self-adjoint part of a  $\mathbb{C}^*$ -algebra is equivalent to characterizing the state space of a  $\mathbb{C}^*$ -algebra.

<ロト 4 回 ト 4 回 ト 4 回 ト 回 の Q (O)</p>

# Space of states and Jordan–Banach algebras

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras The state space S of the quantum system does not determine univocally the  $\mathbb{C}^*$  structure of the algebra of observables but only its Jordan–Banach real algebra.

It follows from results of Kadison (Kadison, A representation theory for commutative topological algebra, Mem. Amer. Math. Soc. 1951) that the self-adjoint part of a  $\mathbb{C}^*$ -algebra is isometrically isomorphic, as an ordered normed linear space, to the space of all w\*-continuous affine functions on the state space.

In view of this, characterizing the self-adjoint part of a  $\mathbb{C}^*$ -algebra is equivalent to characterizing the state space of a  $\mathbb{C}^*$ -algebra. Then the question of when a given Jordan–Banach algebra is the real part of a  $\mathbb{C}^*$ -algebra raises. A. Connes and Alfsen & Shultz gave different answers:

A. Connes, *Charactérisation des espaces vectoriels ordonnés sous-jacent aux algébres de von Neumann*, Ann. Inst. Fourier (Grenoble) **24** (1974), 121. E. M. Alfsen, F. W. Shultz, *On Orientation and Dynamics in Operator Algebras. Part I*, Commun. Math. Phys. **194** (1998) 87.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# JORDAN-BANACH ALGEBRAS AND ORDER DERIVATIONS

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras A Jordan–Banach algebra is a Jordan algebra  $(\mathcal{L}, \circ)$  with a complete norm  $\|\cdot\|$  such that  $\forall a, b \in \mathcal{L}$ : 1)  $\|a \circ b\| < \|a\| \|b\|$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

II) 
$$||a^2|| = ||a||^2$$
  
III)  $||a^2|| \le ||a \circ a + b \circ b||$ 

# JORDAN–BANACH ALGEBRAS AND ORDER DERIVATIONS

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras A Jordan–Banach algebra is a Jordan algebra  $(\mathcal{L}, \circ)$  with a complete norm  $\|\cdot\|$  such that  $\forall a, b \in \mathcal{L}$ :

I) 
$$\|a \circ b\| \le \|a\| \|b\|$$
  
II)  $\|a^2\| = \|a\|^2$   
III)  $\|a^2\| \le \|a \circ a + b \circ b\|$ 

A unital JB–algebra 
$${\boldsymbol{\mathcal L}}$$
 is a complete order unit space with respect to the positive cone

$$\mathcal{L}^+ = \{ a^2 \mid a \in \mathcal{L} \}.$$

#### Definition

A bounded linear operator  $\delta$  on a JB-algebra  $\mathcal{L}$  is called an order derivation if  $\exp^{t\delta}(\mathcal{L}^+) \subset \mathcal{L}^+, \ \forall t \in \mathbb{R}.$ 

Define the linear operator  $\delta_b$  by  $\delta_b(a) = b \circ a$ .

# JORDAN–BANACH ALGEBRAS AND ORDER DERIVATIONS

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras A Jordan–Banach algebra is a Jordan algebra  $(\mathcal{L}, \circ)$  with a complete norm  $\|\cdot\|$  such that  $\forall a, b \in \mathcal{L}$ :

I) 
$$\|a \circ b\| \le \|a\| \|b\|$$
  
II)  $\|a^2\| = \|a\|^2$   
III)  $\|a^2\| \le \|a \circ a + b \circ b\|$ 

A unital JB–algebra  ${\mathcal L}$  is a complete order unit space with respect to the positive cone

$$\mathcal{L}^+ = \{ a^2 \mid a \in \mathcal{L} \}.$$

#### DEFINITION

A bounded linear operator  $\delta$  on a JB-algebra  $\mathcal{L}$  is called an order derivation if  $\exp^{t\delta}(\mathcal{L}^+) \subset \mathcal{L}^+, \ \forall t \in \mathbb{R}.$ 

Define the linear operator  $\delta_b$  by  $\delta_b(a) = b \circ a$ .

#### DEFINITION

An order derivation  $\delta$  on a unital JB-algebra  $\mathcal{L}$  is self-adjoint if there exists  $a \in \mathcal{L}$  such that  $\delta = \delta_a$  and is skew-adjoint if  $\delta(1) = 0$ .

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetrie extension of Lie–Jordan Banach algebras

#### **DEFINITION** (DYNAMICAL CORRESPONDENCE)

A dynamical correspondence on a unital JB-algebra  $\mathcal{L}$  is a linear map  $\psi: a \to \psi_a$  from  $\mathcal{L}$  into the set of skew order derivations on  $\mathcal{L}$  s.t. I)  $\exists \kappa \in \mathbb{R}$  such that  $\kappa [\psi_a, \psi_b] = -[\delta_a, \delta_b], \quad \forall a, b \in \mathcal{L}$ , and II)  $\psi_a a = 0, \quad \forall a \in \mathcal{L}$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras

#### **DEFINITION** (DYNAMICAL CORRESPONDENCE)

A dynamical correspondence on a unital JB-algebra  $\mathcal{L}$  is a linear map  $\psi \colon a \to \psi_a$  from  $\mathcal{L}$  into the set of skew order derivations on  $\mathcal{L}$  s.t. I)  $\exists \kappa \in \mathbb{R}$  such that  $\kappa [\psi_a, \psi_b] = -[\delta_a, \delta_b], \quad \forall a, b \in \mathcal{L}$ , and II)  $\psi_a a = 0, \quad \forall a \in \mathcal{L}$ 

#### LEMMA

Let  $(\mathcal{L}, [\cdot, \cdot]_{\mathcal{L}}, \circ)$  be a LJB–algebra. Then  $\exp^{[a, \cdot]_{\mathcal{L}}}$  is a Jordan automorphism  $\forall a \in \mathcal{L}$ .

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras

#### DEFINITION (DYNAMICAL CORRESPONDENCE)

A dynamical correspondence on a unital JB-algebra  $\mathcal{L}$  is a linear map  $\psi \colon a \to \psi_a$  from  $\mathcal{L}$  into the set of skew order derivations on  $\mathcal{L}$  s.t. I)  $\exists \kappa \in \mathbb{R}$  such that  $\kappa [\psi_a, \psi_b] = -[\delta_a, \delta_b], \quad \forall a, b \in \mathcal{L}$ , and II)  $\psi_a a = 0, \quad \forall a \in \mathcal{L}$ 

#### LEMMA

Let  $(\mathcal{L}, [\cdot, \cdot]_{\mathcal{L}}, \circ)$  be a LJB–algebra. Then  $\exp^{[a, \cdot]_{\mathcal{L}}}$  is a Jordan automorphism  $\forall a \in \mathcal{L}$ .

#### LEMMA

Let  $(\mathcal{L}, [\cdot, \cdot]_{\mathcal{L}}, \circ)$  be a LJB–algebra. Then  $[a, \cdot]_{\mathcal{L}}$  is an order derivation on  $\mathcal{L} \forall a \in \mathcal{L}$ .

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

Quantum Reduction

Supersymmetrie extension of Lie–Jordan Banach algebras

#### Theorem

Let  $\mathcal{L}$  be a unital JB–algebra. There exists a dynamical correspondence  $\psi$  on  $\mathcal{L}$  if and only if  $\mathcal{L}$  is a LJB–algebra with Lie product  $[\cdot, \cdot]_{\mathcal{L}}$  such that

 $[a,b]_{\mathcal{L}} = \psi_a b$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
## Dynamical Correspondence and Lie–Jordan Banach algebras

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

QUANTUM REDUCTION

Supersymmetric extension of Lie–Jordan Banach algebras

#### THEOREM

Let  $\mathcal{L}$  be a unital JB–algebra. There exists a dynamical correspondence  $\psi$  on  $\mathcal{L}$  if and only if  $\mathcal{L}$  is a LJB–algebra with Lie product  $[\cdot, \cdot]_{\mathcal{L}}$  such that

$$[a,b]_{\mathcal{L}} = \psi_a b$$

#### COROLLARY

A unital JB-algebra  $\mathcal{L}$  is Jordan isomorphic to the self-adjoint part of a  $\mathbb{C}^*$ -algebra if and only if it is a LJB-algebra.

## Reduction of $C^*$ -algebras

| Lie–Jordan   |
|--------------|
| BANACH       |
| ALGEBRAS AND |
| Quantum      |
| Reduction    |

Leonardo Ferro

The algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

REDUCTION OF C<sup>\*</sup>-ALGEBRAS

Reduction of Lie-Jordan Algebras

Supersymmetrie extension of Lie-Jordan Banach algebras Field algebra  $\mathcal{F}$  and self-adjoint constraint set  $\mathcal{C}$ .

## REDUCTION OF C\*-ALGEBRAS

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

QUANTUM REDUCTION

REDUCTION OF C\*-ALGEBRAS

Reduction of Lie-Jordan Algebras

Supersymmetrie extension of Lie-Jordan Banach algebras Field algebra  $\mathcal{F}$  and self-adjoint constraint set  $\mathcal{C}$ . Physical state space (Dirac states):

$$\mathcal{S}_D \equiv \{ \, \omega \in \mathcal{S}(\mathcal{F}) \mid \omega(\mathcal{C}^2) = 0, \quad \forall \, \mathcal{C} \in \mathcal{C} \, \}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

## REDUCTION OF C\*-ALGEBRAS

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

REDUCTION OF C<sup>\*</sup>-ALGEBRAS

Reduction of Lie-Jordan Algebras

Supersymmetric extension of Lie–Jordan Banach algebras Field algebra  $\mathcal{F}$  and self-adjoint constraint set  $\mathcal{C}$ . Physical state space (Dirac states):

$$\mathcal{S}_D \equiv \{ \, \omega \in \mathcal{S}(\mathcal{F}) \mid \omega(\mathcal{C}^2) = 0, \quad \forall \, \mathcal{C} \in \mathcal{C} \, \}$$

Let  $\mathcal{D} = [\mathcal{FC}] \cap [\mathcal{CF}]$ .  $\mathcal{D}$  is a subalgebra of  $\mathcal{F}$  and is the largest non-unital  $\mathbb{C}^*$ -algebra in  $\bigcap_{\omega \in S_D} \ker \omega$ .

#### REDUCTION OF C\*-ALGEBRAS

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

REDUCTION OF C<sup>\*</sup>-ALGEBRAS

REDUCTION OF LIE-JORDAN ALGEBRAS

Supersymmetric extension of Lie–Jordan Banach algebras Field algebra  $\mathcal{F}$  and self-adjoint constraint set  $\mathcal{C}$ . Physical state space (Dirac states):

$$\mathcal{S}_D \equiv \{ \, \omega \in \mathcal{S}(\mathcal{F}) \mid \omega(\mathcal{C}^2) = \mathsf{0}, \quad \forall \, \mathcal{C} \in \mathcal{C} \, \}$$

Let  $\mathcal{D} = [\mathcal{FC}] \cap [\mathcal{CF}]$ .  $\mathcal{D}$  is a subalgebra of  $\mathcal{F}$  and is the largest non-unital  $\mathbb{C}^*$ -algebra in  $\bigcap_{\omega \in \mathcal{S}_D} \ker \omega$ . The multiplier algebra of  $\mathcal{D}$ 

$$\mathcal{O} = \{ F \in \mathcal{F} \mid FH \in \mathcal{D} \text{ and } HF \in \mathcal{D}, \quad \forall H \in \mathcal{D} \}$$

i.e. the largest set for which  ${\cal D}$  is a bilateral ideal corresponds to the Lie normalizer of  ${\cal D}.$ 

It follows that the maximal  $\mathbb{C}^*\text{--algebra}$  of physical observables determined by the constraints  $\mathcal C$  is

$$\widetilde{\mathcal{F}} = \mathcal{O}/\mathcal{D}.$$

#### REDUCTION OF LIE-JORDAN ALGEBRAS

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

Quantum Reduction

REDUCTION OF C<sup>\*</sup>-ALGEBRAS

Reduction of Lie-Jordan Algebras

Supersymmetric extension of Lie–Jordan Banach algebras Let  $\mathcal{L}$  be a LJB-algebra  $(\mathcal{L}, \circ, [\cdot, \cdot]_{\mathcal{L}})$ . Consider a closed Jordan ideal  $\mathcal{J}$ :

$$\forall a \in \mathcal{L}, \ \forall x \in \mathcal{J}, \quad x \circ a \in \mathcal{J}$$

Then the quotient space

$$\widetilde{\mathcal{L}} = \mathcal{L}/\mathcal{J}$$

inherits a canonical LJB-algebra structure with respect to the quotient norm

$$\|\widetilde{a}\| = \inf_{b \in \mathcal{J}} \|a + b\|$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

#### LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

REDUCTION OF C<sup>\*</sup>-ALGEBRAS

Reduction of Lie-Jordan Algebras

Supersymmetri extension of Lie–Jordan Banach algebras

#### LEMMA

Let  $\mathcal{Z}$  and  $\mathcal{I}$  be two Lie-Jordan subalgebras of a LJB  $\mathcal{V}$ . Then  $\mathcal{Z}^{\mathbb{C}} = \mathcal{Z} \oplus i\mathcal{Z}$  is the Lie normalizer of  $\mathcal{I}^{\mathbb{C}} = \mathcal{I} \oplus i\mathcal{I}$  if and only if  $\mathcal{Z}$  is the Lie normalizer of  $\mathcal{I}$ , i.e.  $\mathcal{Z} = \mathcal{N}_{\mathcal{I}}$ .

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Reduction of C<sup>\*</sup>-Algebras

Reduction of Lie-Jordan Algebras

Supersymmetri extension of Lie–Jordan Banach algebras

#### LEMMA

Let  $\mathcal{Z}$  and  $\mathcal{I}$  be two Lie-Jordan subalgebras of a LJB  $\mathcal{V}$ . Then  $\mathcal{Z}^{\mathbb{C}} = \mathcal{Z} \oplus i\mathcal{Z}$  is the Lie normalizer of  $\mathcal{I}^{\mathbb{C}} = \mathcal{I} \oplus i\mathcal{I}$  if and only if  $\mathcal{Z}$  is the Lie normalizer of  $\mathcal{I}$ , i.e.  $\mathcal{Z} = \mathcal{N}_{\mathcal{I}}$ .

#### Lemma

Let  $\mathcal{Z}$  and  $\mathcal{I}$  be two Lie-Jordan subalgebras of  $\mathcal{V}$ . Then  $\mathcal{I}$  is a Lie–Jordan ideal of  $\mathcal{Z}$  if and only if  $\mathcal{I}^{\mathbb{C}} = \mathcal{I} \oplus i\mathcal{I}$  is an associative bilateral ideal of  $\mathcal{Z}^{\mathbb{C}} = \mathcal{Z} \oplus i\mathcal{Z}$ .

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

REDUCTION OF C<sup>\*</sup>-ALGEBRAS

Reduction of Lie-Jordan Algebras

Supersymmetri extension of Lie-Jordan Banach algebras

#### LEMMA

Let  $\mathcal{Z}$  and  $\mathcal{I}$  be two Lie-Jordan subalgebras of a LJB  $\mathcal{V}$ . Then  $\mathcal{Z}^{\mathbb{C}} = \mathcal{Z} \oplus i\mathcal{Z}$  is the Lie normalizer of  $\mathcal{I}^{\mathbb{C}} = \mathcal{I} \oplus i\mathcal{I}$  if and only if  $\mathcal{Z}$  is the Lie normalizer of  $\mathcal{I}$ , i.e.  $\mathcal{Z} = \mathcal{N}_{\mathcal{I}}$ .

#### LEMMA

Let  $\mathcal{Z}$  and  $\mathcal{I}$  be two Lie-Jordan subalgebras of  $\mathcal{V}$ . Then  $\mathcal{I}$  is a Lie–Jordan ideal of  $\mathcal{Z}$  if and only if  $\mathcal{I}^{\mathbb{C}} = \mathcal{I} \oplus i\mathcal{I}$  is an associative bilateral ideal of  $\mathcal{Z}^{\mathbb{C}} = \mathcal{Z} \oplus i\mathcal{Z}$ .

#### Theorem

Let  $\mathcal{F} = \mathcal{L} \oplus i\mathcal{L}$  be the field algebra of the quantum system and  $\mathcal{C}$  a real constraint set. Let  $\mathcal{D} = [\mathcal{F}\mathcal{C}] \cap [\mathcal{C}\mathcal{F}]$ ,  $\mathcal{O} = \mathcal{D}_W$  and  $\widetilde{\mathcal{F}} = \mathcal{O}/\mathcal{D} = \widetilde{\mathcal{L}} \oplus i\widetilde{\mathcal{L}}$  be the reduced field algebra. Then:

$$\widetilde{\mathcal{L}} = \mathcal{N}_{\mathcal{J}}/\mathcal{J},$$

with  $\mathcal{N}_{\mathcal{J}}$  and  $\mathcal{J}$  being the s.a. part of  $\mathcal{O}$  and  $\mathcal{D}$  respectively, i.e.  $\mathcal{O} = \mathcal{N}_{\mathcal{J}} \oplus i\mathcal{N}_{\mathcal{J}}$  and  $\mathcal{D} = \mathcal{J} \oplus i\mathcal{J}$ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ



EXTENSION C LIE-JORDAN BANACH

#### Is there a more general reduction?

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Reduction of C<sup>\*</sup>-Algebras

Reduction of Lie-Jordan Algebras

Supersymmetri extension of Lie–Jordan Banach algebras A more general way to reduce a Lie–Jordan algebra  $\mathcal{L}$  is to consider a linear subspace  $B \subset \mathcal{L}$  and quotient it with respect to another subspace  $S \subset \mathcal{L}$  s.t.  $S \cap B \neq \{0\}$ . Which are the conditions to be imposed on B and S such that  $B/B \cap S$  is a Lie–Jordan algebra?

#### IS THERE A MORE GENERAL REDUCTION?

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

QUANTUM REDUCTION

REDUCTION OF C<sup>\*</sup>-ALGEBRAS

Reduction of Lie-Jordan Algebras

Supersymmetr extension of Lie–Jordan Banach algebras A more general way to reduce a Lie–Jordan algebra  $\mathcal{L}$  is to consider a linear subspace  $B \subset \mathcal{L}$  and quotient it with respect to another subspace  $S \subset \mathcal{L}$  s.t.  $S \cap B \neq \{0\}$ . Which are the conditions to be imposed on B and S such that  $B/B \cap S$  is a Lie–Jordan algebra? The new products o' and  $[\cdot, \cdot]'$  on  $B/B \cap S$  are

$$a' \circ b' \equiv \widetilde{a} \circ \widetilde{b} + S$$
  
 $[a', b']' \equiv [\widetilde{a}, \widetilde{b}] + S,$ 

where  $a' = \tilde{a} + S$  and  $b' = \tilde{b} + S$  with  $\tilde{a}, \tilde{b} \in B$ . For the definitions to make sense we must require:

 $B \circ B \subset B + S \qquad [B, B] \subset B + S$  $B \circ B \cap S \subset S \qquad [B, B \cap S] \subset S$ 

But they do not satisfy in general the compatibility conditions.

#### IS THERE A MORE GENERAL REDUCTION?

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

QUANTUM REDUCTION

REDUCTION OF C<sup>\*</sup>-ALGEBRAS

REDUCTION OF LIE-JORDAN

Supersymmetri extension of Lie–Jordan Banach algebras Observe that the linear space B + S can be decomposed as a direct sum:

$$B+S=B\cap S\oplus\Sigma\oplus\Gamma,$$

with  $\Sigma \subset B$ ,  $\Sigma \cap S = \{0\}$  and  $\Gamma \subset S$ ,  $\Gamma \cap B = \{0\}$ . From this decomposition we can also write

 $B = B \cap S \oplus \Sigma$ ,

and then

 $B + S = B \oplus \Gamma$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

# A NEW FRAMEWORK FOR QUANTUM ANOMALIES?

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

QUANTUM REDUCTION

Reduction of C<sup>\*</sup>-Algebras

REDUCTION OF LIE-JORDAN ALGEBRAS

Supersymmetrie extension of Lie–Jordan Banach algebras

#### THEOREM

Let  $(\mathcal{L}, \circ, [\cdot, \cdot])$  be a Lie–Jordan algebra and B and S two subsets such that  $B \cap S \neq \{0\}$ . Then  $(B_{B \cap S}, \circ', [\cdot, \cdot]')$  is a Lie–Jordan algebra if and only if there exist a subset  $\Gamma \subset S$  such that  $B + S = B \oplus \Gamma$  and the following conditions are satisfied:

$$B \circ B \subset B \oplus \Gamma \qquad [B, B] \subset B \oplus \Gamma B \circ B \cap S \subset S \qquad [B, B \cap S] \subset S \qquad (1) B \circ \Gamma \subset S \qquad [B, \Gamma] \subset S$$

# A NEW FRAMEWORK FOR QUANTUM ANOMALIES?

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

QUANTUM REDUCTION

Reduction of C<sup>\*</sup>-Algebras

Reduction of Lie-Jordan Algebras

Supersymmetri extension of Lie–Jordan Banach algebras

#### THEOREM

Let  $(\mathcal{L}, \circ, [\cdot, \cdot])$  be a Lie–Jordan algebra and B and S two subsets such that  $B \cap S \neq \{0\}$ . Then  $(B_{B \cap S}, \circ', [\cdot, \cdot]')$  is a Lie–Jordan algebra if and only if there exist a subset  $\Gamma \subset S$  such that  $B + S = B \oplus \Gamma$  and the following conditions are satisfied:

| $B \circ B \subset B \oplus \Gamma$ | $[B,B]\subset B\oplus \Gamma$ |     |
|-------------------------------------|-------------------------------|-----|
| $B \circ B \cap S \subset S$        | $[B,B\cap S]\subset S$        | (1) |
| $B \circ \Gamma \subset S$          | $[B, \Gamma] \subset S$       |     |

If we imagine that S represents a symmetry which is not preserved at the quantum level (quantum anomaly), then conditions (1) tell us that twe can still construct a good algebra of observables by satisfying those properties.

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach Algebras Graded Lie–Jordan Banach algebra  $\mathcal{L} = \bigoplus_{g} \mathcal{L}_{g}$  together with two bilinear operations preserving the grading:

$$\circ\colon \mathcal{L}\times \mathcal{L}\to \mathcal{L}$$

 $[\cdot, \cdot] : \mathcal{L} \times \mathcal{L} \to \mathcal{L}$ 

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

and

such that:

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

QUANTUM REDUCTION

Supersymmetric extension of Lie–Jordan Banach Algebras Graded Lie–Jordan Banach algebra  $\mathcal{L} = \bigoplus_{g} \mathcal{L}_{g}$  together with two bilinear operations preserving the grading:

$$\circ\colon \mathcal{L}\times \mathcal{L}\to \mathcal{L}$$

and

$$[\cdot,\cdot]:\mathcal{L}\times\mathcal{L}\to\mathcal{L}$$

such that:

•  $a \circ b = (-1)^{|a||b|} b \circ a$  (supercommutative superalgebra)

Lie-Jordan Banach Algebras ane Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetri extension of Lie–Jordan Banach algebras Graded Lie–Jordan Banach algebra  $\mathcal{L} = \bigoplus_{g} \mathcal{L}_{g}$  together with two bilinear operations preserving the grading:

$$\circ\colon \mathcal{L}\times \mathcal{L}\to \mathcal{L}$$

and

$$[\cdot,\cdot]:\mathcal{L}\times\mathcal{L}\to\mathcal{L}$$

such that:

- $a \circ b = (-1)^{|a||b|} b \circ a$  (supercommutative superalgebra)
  - $(a^2 \circ b) \circ a = a^2 \circ (b \circ a)$  (weak associativity)

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras Graded Lie–Jordan Banach algebra  $\mathcal{L} = \bigoplus_{g} \mathcal{L}_{g}$  together with two bilinear operations preserving the grading:

$$\circ\colon \mathcal{L}\times \mathcal{L}\to \mathcal{L}$$

and

 $[\cdot,\cdot]:\mathcal{L}\times\mathcal{L}\to\mathcal{L}$ 

such that:

- $a \circ b = (-1)^{|a||b|} b \circ a$  (supercommutative superalgebra)
- $(a^2 \circ b) \circ a = a^2 \circ (b \circ a)$  (weak associativity)
- $[a, b] = -(-1)^{|a||b|}[b, a]$  $[a, [b, c]] + [c, [a, b]] + (-1)^{|a||b|}[b, [c, a]] = 0$  (Lie superalgebra)

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras Graded Lie–Jordan Banach algebra  $\mathcal{L} = \bigoplus_{g} \mathcal{L}_{g}$  together with two bilinear operations preserving the grading:

$$\circ\colon \mathcal{L}\times \mathcal{L}\to \mathcal{L}$$

and

 $[\cdot,\cdot]:\mathcal{L}\times\mathcal{L}\to\mathcal{L}$ 

such that:

- $a \circ b = (-1)^{|a||b|} b \circ a$  (supercommutative superalgebra)
- $(a^2 \circ b) \circ a = a^2 \circ (b \circ a)$  (weak associativity)
- [a, b] = -(-1)<sup>|a||b|</sup>[b, a] [a, [b, c]] + [c, [a, b]] + (-1)<sup>|a||b|</sup>[b, [c, a]] = 0 (Lie superalgebra)
  [a, b ∘ c] = [a, b] ∘ c + (-1)<sup>|a||b|</sup>b ∘ [a, c] (superderivation)

Lie-Jordan Banach Algebras ane Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras Graded Lie–Jordan Banach algebra  $\mathcal{L} = \bigoplus_{g} \mathcal{L}_{g}$  together with two bilinear operations preserving the grading:

$$\circ\colon \mathcal{L}\times \mathcal{L}\to \mathcal{L}$$

and

 $[\cdot,\cdot]:\mathcal{L}\times\mathcal{L}\to\mathcal{L}$ 

such that:

- $a \circ b = (-1)^{|a||b|} b \circ a$  (supercommutative superalgebra)
- $(a^2 \circ b) \circ a = a^2 \circ (b \circ a)$  (weak associativity)
- $[a, b] = -(-1)^{|a||b|}[b, a]$  $[a, [b, c]] + [c, [a, b]] + (-1)^{|a||b|}[b, [c, a]] = 0$  (Lie superalgebra)
- $[a, b \circ c] = [a, b] \circ c + (-1)^{|a||b|} b \circ [a, c]$  (superderivation)
- (a ∘ b) ∘ c − a ∘ (b ∘ c) = k [b, [c, a]], for some k ∈ ℝ<sup>+</sup> (associator identity)

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach Algebras Examples:



LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie-Jordan Banach algebras Examples:

• A Lie–Jordan Banach algebra  $\mathcal{L}_0$  is clearly an example of super Lie–Jordan Banach algebra of degree 0.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE—JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras

#### Examples:

- A Lie–Jordan Banach algebra L<sub>0</sub> is clearly an example of super Lie–Jordan Banach algebra of degree 0.
- Given a Lie group G with Lie algebra g, the exterior algebra Λ(g ⊕ g\*) possess a Super(-associative) LJB-algebra structure with associative Jordan multiplication given by the wedge product and the Lie bracket defined for X, Y ∈ g and α, β ∈ g\* by

$$[\alpha, X] = \alpha(X) = [X, \alpha] \quad [X, Y] = \mathbf{0} = [\alpha, \beta].$$

We then extend it to all of  $\Lambda(\mathfrak{g} \oplus \mathfrak{g}^*)$  as an odd derivation.

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE—JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras

#### Examples:

- A Lie–Jordan Banach algebra L<sub>0</sub> is clearly an example of super Lie–Jordan Banach algebra of degree 0.
- Given a Lie group G with Lie algebra g, the exterior algebra Λ(g ⊕ g\*) possess a Super(-associative) LJB-algebra structure with associative Jordan multiplication given by the wedge product and the Lie bracket defined for X, Y ∈ g and α, β ∈ g\* by

$$[\alpha, X] = \alpha(X) = [X, \alpha] \quad [X, Y] = \mathbf{0} = [\alpha, \beta].$$

We then extend it to all of  $\Lambda(\mathfrak{g} \oplus \mathfrak{g}^*)$  as an odd derivation. It is a  $\mathbb{Z}$ -graded SLJB-algebra with elements of  $\mathfrak{g}$  having degree -1 and elements of  $\mathfrak{g}^*$  having degree +1.

## Action of a group on a Super Lie–Jordan Banach algebra

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach Algebras Let G be a Lie group acting on a SLJB–algebra  $\mathcal{L}$ , that is it exists a map:

$$\hat{g} \colon G \to \operatorname{Aut}(\mathcal{L})$$

which assigns to each element g of the group, an automorphism of the algebra U(g).

## Action of a group on a Super Lie–Jordan Banach algebra

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

QUANTUM REDUCTION

Supersymmetric extension of Lie–Jordan Banach Algebras Let G be a Lie group acting on a SLJB-algebra  $\mathcal{L}$ , that is it exists a map:

$$\hat{g} \colon G \to \operatorname{Aut}(\mathcal{L})$$

which assigns to each element g of the group, an automorphism of the algebra U(g). It is also possible to define the action of the Lie algebra  $\mathfrak{g}$  on the

LJB-algebra  $\mathcal{L}$ . Let  $a \in \mathcal{L}$  and  $\xi \in \mathfrak{g}$ , then

$$\xi(a)=rac{d}{ds}U(\exp^{s\xi})(a)\mid_{s=0}$$

## Action of a group on a Super Lie–Jordan Banach algebra

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

QUANTUM REDUCTION

Supersymmetric extension of Lie–Jordan Banach algebras Let G be a Lie group acting on a SLJB-algebra  $\mathcal{L}$ , that is it exists a map:

$$\hat{g} \colon G \to \operatorname{Aut}(\mathcal{L})$$

which assigns to each element g of the group, an automorphism of the algebra U(g). It is also possible to define the action of the Lie algebra  $\mathfrak{g}$  on the LJB-algebra  $\mathcal{L}$ . Let  $a \in \mathcal{L}$  and  $\xi \in \mathfrak{g}$ , then

$$\xi(a) = rac{d}{ds} U(\exp^{s\xi})(a)\mid_{s=0}$$

This action is a derivation of the algebra, that is:

$$\xi(a \circ b) = \xi(a) \circ b + a \circ \xi(b)$$

and then by the previous theorem on Jordan derivations there exists  $J \in \mathcal{L}$  such that  $\forall a \in \mathcal{L}$ ,

 $\xi(a)=[J,a].$ 

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras Tensor products of Super LJB-algebras: Given two SLJB-algebras P and Q, their tensor product  $P \otimes Q$  can be given the structure of a SLJB-algebra.

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraid Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras Tensor products of Super LJB–algebras: Given two SLJB–algebras P and Q, their tensor product  $P \otimes Q$  can be given the structure of a SLJB–algebra.

 $\forall a, b \in P \text{ and } u, v \in Q \text{ we define}$ 

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach Algebras Tensor products of Super LJB–algebras: Given two SLJB–algebras P and Q, their tensor product  $P \otimes Q$  can be given the structure of a SLJB–algebra.

 $\forall a, b \in P \text{ and } u, v \in Q \text{ we define}$ 

$$(a \otimes u) \circ (b \otimes v) = (-1)^{|u||b|} a \circ b \otimes u \circ v$$

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach Algebras Tensor products of Super LJB–algebras: Given two SLJB–algebras P and Q, their tensor product  $P \otimes Q$  can be given the structure of a SLJB–algebra.

 $\forall a, b \in P \text{ and } u, v \in Q \text{ we define}$ 

$$(a \otimes u) \circ (b \otimes v) = (-1)^{|u||b|} a \circ b \otimes u \circ v$$

$$[a \otimes u, b \otimes v] = (-1)^{|u||b|}([a, b] \otimes [u, v])$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras Tensor products of Super LJB-algebras: Given two SLJB-algebras P and Q, their tensor product  $P \otimes Q$  can be given the structure of a SLJB-algebra.

 $\forall a, b \in P \text{ and } u, v \in Q \text{ we define}$ 

$$(a \otimes u) \circ (b \otimes v) = (-1)^{|u||b|} a \circ b \otimes u \circ v$$

$$[a \otimes u, b \otimes v] = (-1)^{|u||b|} ([a, b] \otimes [u, v])$$

▲□▼▲□▼▲□▼▲□▼ □ ● ●

These operations satisfy the axioms of a SLJB-algebra.

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach Algebras Tensor products of Super LJB–algebras: Given two SLJB–algebras P and Q, their tensor product  $P \otimes Q$  can be given the structure of a SLJB–algebra.

 $\forall a, b \in P \text{ and } u, v \in Q \text{ we define}$ 

$$(a \otimes u) \circ (b \otimes v) = (-1)^{|u||b|} a \circ b \otimes u \circ v$$

$$[a \otimes u, b \otimes v] = (-1)^{|u||b|} ([a, b] \otimes [u, v])$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

These operations satisfy the axioms of a SLJB–algebra. Example:

 $\mathcal{C} = \mathcal{L} \otimes \Lambda(\mathfrak{g} \oplus \mathfrak{g}^*) \text{ is a } \mathbb{Z}\text{-graded SLJB-algebra:} \\ \mathcal{C} = \bigoplus_n \mathcal{C}^n = \bigoplus_{i-j=n} \mathcal{C}^{i,j} = \bigoplus_{i-j=n} \Lambda^i(\mathfrak{g}^*) \otimes \Lambda^j(\mathfrak{g}) \otimes \mathcal{L}$ 

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

#### Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras Tensor products of Super LJB–algebras: Given two SLJB–algebras P and Q, their tensor product  $P \otimes Q$  can be given the structure of a SLJB–algebra.

 $\forall a, b \in P \text{ and } u, v \in Q \text{ we define}$ 

$$(a \otimes u) \circ (b \otimes v) = (-1)^{|u||b|} a \circ b \otimes u \circ v$$

$$[a \otimes u, b \otimes v] = (-1)^{|u||b|}([a, b] \otimes [u, v])$$

These operations satisfy the axioms of a SLJB-algebra. Example:

 $\mathcal{C} = \mathcal{L} \otimes \Lambda(\mathfrak{g} \oplus \mathfrak{g}^*) \text{ is a } \mathbb{Z}\text{-graded SLJB-algebra:}$  $\mathcal{C} = \bigoplus_n \mathcal{C}^n = \bigoplus_{i-j=n} \mathcal{C}^{i,j} = \bigoplus_{i-j=n} \Lambda^i(\mathfrak{g}^*) \otimes \Lambda^j(\mathfrak{g}) \otimes \mathcal{L}$ 

Although the bigrading is preserved by the exterior product, the Lie bracket does not preserve it, infact

$$[\mathcal{C}^{i,j},\mathcal{C}^{k,l}] \subset \mathcal{C}^{i+k,j+l} \oplus \mathcal{C}^{i+k-1,j+l-1}$$

but the total degree is preserved.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

#### SUPERCHARGE AND BRST REDUCTION

LIE-JORDAN BANACH ALGEBRAS AND QUANTUM REDUCTION

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR RESPONDENCE

QUANTUM REDUCTION

Supersymmetric extension of Lie–Jordan Banach algebras A superderivation of degree k is a linear map  $D \colon \mathcal{C}^n \to \mathcal{C}^{n+k}$  s.t.

 $D(a \circ b) = (Da) \circ b + (-1)^{k|a|} a \circ (Db), \quad D[a, b] = [Da, b] + (-1)^{k|a|} [a, Db].$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The map  $a \rightarrow [Q, a]$  for some  $Q \in \mathcal{C}^k$  is a superderivation.
## SUPERCHARGE AND BRST REDUCTION

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic Structure of Mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

QUANTUM REDUCTION

Supersymmetric extension of Lie–Jordan Banach Algebras A superderivation of degree k is a linear map  $D \colon \mathcal{C}^n \to \mathcal{C}^{n+k}$  s.t.

 $D(a \circ b) = (Da) \circ b + (-1)^{k|a|} a \circ (Db), \quad D[a, b] = [Da, b] + (-1)^{k|a|} [a, Db].$ 

The map  $a \to [Q, a]$  for some  $Q \in C^k$  is a superderivation. The total differential  $D = [Q, \cdot]$ , where  $Q \in C^1$  is given explicitly by:

$$Q = J_i heta^i - rac{1}{2} c^i_{jk} heta^j \wedge heta^k \wedge X_i$$

where  $X_i$  (antighosts) is a basis of  $\mathfrak{g}$  with  $[X_i, X_j] = c_{ij}^k X_k$  and  $\theta^i$  (ghosts) is a basis for  $\mathfrak{g}^*$ .

## SUPERCHARGE AND BRST REDUCTION

Lie-Jordan Banach Algebras and Quantum Reduction

> Leonardo Ferro

The Algebraic structure of mechanics

LIE-JORDAN BANACH ALGEBRAS AND DYNAMICAL COR-RESPONDENCE

Quantum Reduction

Supersymmetric extension of Lie–Jordan Banach algebras A superderivation of degree k is a linear map  $D\colon \mathcal{C}^n\to \mathcal{C}^{n+k}$  s.t.

 $D(a \circ b) = (Da) \circ b + (-1)^{k|a|} a \circ (Db), \quad D[a, b] = [Da, b] + (-1)^{k|a|} [a, Db].$ 

The map  $a \to [Q, a]$  for some  $Q \in \mathcal{C}^k$  is a superderivation. The total differential  $D = [Q, \cdot]$ , where  $Q \in \mathcal{C}^1$  is given explicitly by:

$$Q = J_i heta^i - rac{1}{2} c^i_{jk} heta^j \wedge heta^k \wedge X_i$$

where  $X_i$  (antighosts) is a basis of  $\mathfrak{g}$  with  $[X_i, X_j] = c_{ij}^k X_k$  and  $\theta^i$  (ghosts) is a basis for  $\mathfrak{g}^*$ . It is also verified that [Q, Q] = 0 which is equivalent to  $D^2 = 0$  and then we have defined our graded complex  $(\mathcal{C}, D)$ .

## THEOREM (BRST REDUCTION)

The zero-th class cohomology of the graded complex  $(\mathcal{C}, D)$  is given by

 $H^0_D(\mathcal{C}) = \mathcal{N}_\mathcal{J}/\mathcal{J}$