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@ Reduction of C*-algebras
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@ SUPERSYMMETRIC EXTENSION OF LIE-JORDAN
BANACH ALGEBRAS

Joint work with F. Falceto, A. Ibort and G. Marmo.
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o Understand the quantization procedure and the classical limit of
quantum mechanics

@ Alternative to deal with symmetries and constraints

@ Motivational examples: the gravitational field may be regarded
as a constrained particle moving on the infinite-dimensional
space of metrics (superspace); the configuration space of a
Yang-Mills theory is that of a particle moving on the
infinite-dimensional space A/G .where A is the space of smooth
connections on some bundle and G is the corresponding group
of local gauge transformations.
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Let £ be a real vector space equipped with two algebraic operations
*s and x, from £ x L to L.

Classical mechanics is the space of smooth functions on some
Poisson manifold P

L=C>(P)

f xs g = fg pointwise product

fx,g ={f,g} Poisson bracket.

Quantum mechanics is the space of self-adjoint operators £ = B, on
some Hilbert space H (closed under operator multiplication) with
a*s b= 3(ab+ ba) anticommutator (Jordan product)

a*, b= 2(ab— ba) scaled commutator (Lie bracket).
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Abstracting the properties of *; and *, we are led to the following
axioms (8% = a x, a):
@ axg b= bx,a (symmetry)
@ ax, b= —bx,a (anti-symmetry)
@ ax,(bxyc)4 c*,(a*sb)+ bx, (cx,a) =0 (Jacobi identity)
@ (3% *¢ b) s a = a° x¢ (b *s a) (weak associativity)
@ ax*,(bxsc)=(ax,b)*sc+ bxs(ax,c) (Liebniz rule)

o (axsb)*sc—axs(bxsc)=h bx*,(cx,a), for some h € Rf
(associator identity)

These axioms define the so-called Lie-Jordan algebra.
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The case i = 0 represents the classical algebra of observables. This
means s is an associative product in classical mechanics (associative
Lie-Jordan algebra).
In the case of Quantum Mechanics A\ = %.
One can always define an associative product on L C = L+ iL by
putting

axb=axsb—iVhax, b

but this product lacks direct physical meaning, as the product of two
observable operators fails to be observable.

The observables are closed under x5 and x*,.

The symmetric product *, leads to spectral calculus and the
antisymmetric *, expresses the dual role of observables: as
observable and as generators of dynamics.

In the following s will be denoted by o and *, by [-,].
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SPACE OF STATES AND JORDAN—-BANACH

ALGEBRAS

The state space S of the quantum system does not determine
univocally the C* structure of the algebra of observables but only its
Jordan—Banach real algebra.

It follows from results of Kadison (Kadison, A representation theory for
commutative topological algebra, Mem. Amer. Math. Soc. 1951) that the
self-adjoint part of a C*—algebra is isometrically isomorphic, as an
ordered normed linear space, to the space of all w*-continuous affine
functions on the state space.

In view of this, characterizing the self-adjoint part of a C*—algebra is
equivalent to characterizing the state space of a C*—algebra.

Then the question of when a given Jordan—Banach algebra is the real
part of a C*—algebra raises. A. Connes and Alfsen & Shultz gave
different answers:

A. Connes, Charactérisation des espaces vectoriels ordonnés sous-jacent aux
algébres de von Neumann, Ann. Inst. Fourier (Grenoble) 24 (1974), 121. E. M.
Alfsen, F. W. Shultz, On Orientation and Dynamics in Operator Algebras. Part |,
Commun. Math. Phys. 194 (1998) 87.




JORDAN-BANACH ALGEBRAS AND ORDER

DERIVATIONS

A Jordan—Banach algebra is a Jordan algebra (£, o) with a complete
norm || - || such that Va, b € L:
1) flae bl < |lall [[o]
) [|l2?) = [a]
1) ||a®|| < |laca+ bo b



JORDAN-BANACH ALGEBRAS AND ORDER

DERIVATIONS

A Jordan—Banach algebra is a Jordan algebra (£, o) with a complete
norm || - || such that Va, b € L:

1) llao | < |lall [1]

) 22| = |l
1) ||a®|| < |laca+ bo b
A unital JB—algebra L is a complete order unit space with respect to
the positive cone

LY ={a|acL}.

A bounded linear operator ¢ on a JB—algebra L is called an order
derivation if exp®®(L*) C LT, Vt € R.

Define the linear operator é by dp(a) = bo a.



JORDAN-BANACH ALGEBRAS AND ORDER

DERIVATIONS

A Jordan—Banach algebra is a Jordan algebra (£, o) with a complete
norm || - || such that Va, b € L:

1) Jlao bl| < lall [

) J|a2] = [Jal]
1) ||a®|| < |laca+ bo b
A unital JB—algebra L is a complete order unit space with respect to
the positive cone

LY ={a|acL}.

A bounded linear operator ¢ on a JB—algebra L is called an order
derivation if exp®®(L*) C LT, Vt € R.

Define the linear operator é by dp(a) = bo a.

An order derivation ¢ on a unital JB-algebra L is self-adjoint if there
exists a € L such that § = ¢, and is skew-adjoint if (1) = 0.
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DEFINITION (DYNAMICAL CORRESPONDENCE)

A dynamical correspondence on a unital JB—algebra L is a linear map
1 a — 1, from L into the set of skew order derivations on L s.t.

1) 3k € R such that & [¢,, ¢¥p] = — [02,0], Va,be L, and
) Y,a=0, Vael

LEMMA

Let (L,[,-];,0) be a LUB-algebra. Then expl®lc is a Jordan
automorphismV a € L.

LEMMA

Let (L,[-,],,0) be a LJB-algebra. Then [a, -], is an order
derivation on LV a € L.
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DyYNAMICAL CORRESPONDENCE AND
LIE-JORDAN BANACH ALGEBRAS

THEOREM

Let L be a unital JB-algebra. There exists a dynamical
correspondence v on L if and only if L is a LJB-algebra with Lie
product [-, -], such that

[37 b][: = Ya.b

COROLLARY

| A

A unital JB-algebra L is Jordan isomorphic to the self-adjoint part of
a C*-algebra if and only if it is a LJB-algebra.

4
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Field algebra F and self-adjoint constraint set C.
Physical state space (Dirac states):

Sp={weS(F)|w(C?=0, VCeC(}

Let D = [FC]N[CF]. D is a subalgebra of F and is the largest

non-unital C*—algebra in m ker w. The multiplier algebra of D
wESp

O={FeF|FHeDand HF €D, YHeD}

PG G i.e. the largest set for which D is a bilateral ideal corresponds to the
Lie normalizer of D.

It follows that the maximal C*—algebra of physical observables

determined by the constraints C is

F=0/D.



REDUCTION OF LIE-JORDAN ALGEBRAS

Let £ be a LJB-algebra (£, 0, [, ],).
Consider a closed Jordan ideal 7:

Vae L, VxeJ, xoaeJ
Then the quotient space _
inherits a canonical LJB—algebra structure with respect to the

quotient norm
[all = inf [a+ bl
eJ
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LJB— AND C*~ ALGEBRAS

Let Z and T be two Lie-Jordan subalgebras of a LJBY. Then
2C = Z @ iZ is the Lie normalizer of I = T & iT if and only if Z is the
Lie normalizer of I, i.e. Z = N7.
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LEMMA

Yo ‘ Let Z and T be two Lie-Jordan subalgebras of a LJBY. Then
2% = Z@iZ is the Lie normalizer of I = T & iZ if and only if Z is the

Lie normalizer of Z, i.e. Z = N.

REDUCTION

LEONARDO
FERRO

LEMMA

Let Z and T be two Lie-Jordan subalgebras of V. Then T is a Lie—Jordan
ideal of Z if and only if I® = T & iT is an associative bilateral ideal of
2Zt=zgiz.

| A\

THEOREM

Let F = L@ iL be the field algebra of the quantum system and C a real
constraint set. Let D = [FC]N[CF], O =Dw and F = O/D = L& iL be
the reduced field algebra. Then:

L=N7/J,

with N7 and J being the s.a. part of O and D respectively, i.e.
O=N;s@®iNsandD=JDiJ.




EQUIVALENCE BETWEEN THE REDUCTION OF
LJB— AND C*~ ALGEBRAS

L—————F=L®DiL
J J. ideal, Ny D ass. ideal, O = Dy = Ny & i Ny

> F_op-iei
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A more general way to reduce a Lie—Jordan algebra L is to consider a
linear subspace B C L and quotient it with respect to another
subspace S C Ls.t. SN B # {0}.

Which are the conditions to be imposed on B and S such that
B/gn s is a Lie-Jordan algebra?



IS THERE A MORE GENERAL REDUCTION?

A more general way to reduce a Lie—Jordan algebra L is to consider a
linear subspace B C L and quotient it with respect to another
subspace S C Ls.t. SN B # {0}.

Which are the conditions to be imposed on B and S such that
B/gn s is a Lie-Jordan algebra?

The new products o’ and [-,] on B/B NS are

do b =30b+S
[4,b] =[3,b] + S,

where @ =3+ S and b = b+ S with E,IN) € B. For the definitions
to make sense we must require:

BoBCB+S [B,Bl]c B+ S
BoBNSCS [B,BNS]CS

But they do not satisfy in general the compatibility conditions.
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Observe that the linear space B + S can be decomposed as a direct
sum:

B+S=BnNnSaexrarl,

with X C B, XNS={0}and I C S, N B =1{0}. From this
decomposition we can also write

B=BnSary,

and then
B+S=BoT.
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THEOREM
Let (L,o,][]) be a Lie-Jordan algebra and B and S two subsets

such that BNS # {0}. Then (B/Bn 5,9 [,"]') is a Lie-Jordan
algebra if and only if there exist a subset [ C S such that
B+ S = B®T and the following conditions are satisfied:

BoBcCcB&T [B,Bl]c BaT
BoBNScCS [B,BNS]CS
BolCS [B,f]cS

(1)




A NEW FRAMEWORK FOR QUANTUM
ANOMALIES?

THEOREM

Let (L,0,[-,-]) be a Lie—Jordan algebra and B and S two subsets
such that BNS # {0}. Then (B/Bn 5,9 [,"]') is a Lie-Jordan
algebra if and only if there exist a subset [ C S such that

B+ S = B®T and the following conditions are satisfied:

BoBcCBa®T [B,B]Cc B&T
BoBNSCS [B,BNS|CS (1)
BolcCS [B,T]CS

If we imagine that S represents a symmetry which is not preserved at
the quantum level (quantum anomaly), then conditions (1) tell us
that twe can still construct a good algebra of observables by
satisfying those properties.
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Graded Lie—Jordan Banach algebra £ = € £, together with two
g

bilinear operations preserving the grading:

o: LxL—L

and
[]: LxL—L
such that:
@ aob=(—1)llItlpo a (supercommutative superalgebra)
o (a®ob)oa=a?o(bo a) (weak associativity)
; o [a b] = —(~1)"[b, ]
ALGEBRAS [a,[b, c]] + [c, [a, b]] + (—1)!2I1I[b, [c, a]] = O (Lie superalgebra)
o [a,boc]=[a,b]oc+ (—1)Plho[a,c] (superderivation)
@ (aob)oc—ao(boc)=k[b]c,al], for some k € RT
(associator identity)
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Examples:

@ A Lie—Jordan Banach algebra Ly is clearly an example of super
Lie—Jordan Banach algebra of degree 0.

@ Given a Lie group G with Lie algebra g, the exterior algebra
A(g @ g*) possess a Super(-associative) LJB-algebra structure
with associative Jordan multiplication given by the wedge
product and the Lie bracket defined for X, Y € g and o, € g*
by

[, X] = a(X) = [X,0] [X,Y]=0=[,/0]

We then extend it to all of A(g@® g*) as an odd derivation.
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Examples:

@ A Lie—Jordan Banach algebra Ly is clearly an example of super
Lie—Jordan Banach algebra of degree 0.

@ Given a Lie group G with Lie algebra g, the exterior algebra
A(g @ g*) possess a Super(-associative) LJB-algebra structure
with associative Jordan multiplication given by the wedge
product and the Lie bracket defined for X, Y € g and o, € g*
by

[, X] = a(X) = [X,0] [X,Y]=0=[,/0]

We then extend it to all of A(g@® g*) as an odd derivation.
It is a Z—graded SLJB-algebra with elements of g having degree
—1 and elements of g* having degree +1.

ALGEBRAS



ACTION OF A GROUP ON A SUPER

LIE-JORDAN BANACH ALGEBRA

Let G be a Lie group acting on a SLJB-algebra L, that is it exists a
map:

g: G — Aut(L)

which assigns to each element g of the group, an automorphism of
the algebra U(g).
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Let G be a Lie group acting on a SLJB-algebra L, that is it exists a
map:

g: G — Aut(L)
which assigns to each element g of the group, an automorphism of
the algebra U(g).
It is also possible to define the action of the Lie algebra g on the
LJB-algebra L. Let a € £ and £ € g, then
d

§(a) = 5 U(exp™)(3) |

ALGEBRAS



ACTION OF A GROUP ON A SUPER

LIE-JORDAN BANACH ALGEBRA

Let G be a Lie group acting on a SLJB-algebra L, that is it exists a
map:

g: G — Aut(L)
which assigns to each element g of the group, an automorphism of
the algebra U(g).
It is also possible to define the action of the Lie algebra g on the
LJB-algebra L. Let a € £ and £ € g, then

£(2) = 5 Uew™)(@) o

This action is a derivation of the algebra, that is:
.:1‘.(;1<.|;|us‘ g(a o b) = g(a) [¢] b + ao g(b)

and then by the previous theorem on Jordan derivations there exists
J € L such that Va € L,

¢(a) = [J, al.
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Tensor products of Super LJB-algebras: Given two SLJB-algebras P
and @, their tensor product P ® @ can be given the structure of a
SLJB-algebra.
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and @, their tensor product P ® @ can be given the structure of a
SLJB-algebra.

Va,b € P and u,v € Q we define

(a@u)o(bov)=(-1)"Placbhuov

la@u,b@v] = (~1)"¥([a, b] @ [u,v])
These operations satisfy the axioms of a SLJB—algebra.
Example:
C=L®Ng®g")is a Z-graded SLIB-algebra:
C=PC"= P C'= P N )aNgeLl
L .

i—j=n i—j=n
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Although the bigrading is preserved by the exterior product, the Lie
bracket does not preserve it, infact

[, CR] C gHkat g girk—1d+I-1
b

but the total degree is preserved.



SUPERCHARGE AND BRST REDUCTION

A superderivation of degree k is a linear map D: C" — C™F s.t.
D(aob) = (Da)ob+(—1)*l2lac(Db),  D|a, b] = [Da, b]+(—1)*1I[a, Db].

The map a — [Q, a] for some Q € C* is a superderivation.
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A superderivation of degree k is a linear map D: C" — C™F s.t.

D(aob) = (Da)ob+(—1)*l2lac(Db),  D|a, b] = [Da, b]+(—1)*1I[a, Db].

The map a — [Q, a] for some Q € C* is a superderivation.

The total differential D = [Q, -], where Q € C! is given explicitly by:
Q=Jb — fck6"/\9k/\X

where X; (antighosts) is a basis of g with [X;, Xj] = ¢j X, and ¢’
(ghosts) is a basis for g*.It is also verified that [Q, Q] = 0 which is
equivalent to D? = 0 and then we have defined our graded complex

(C, D).

THEOREM (BRST REDUCTION)

The zero-th class cohomology of the graded complex (C, D) is given
by
H3(C) = Na/z




	The algebraic structure of mechanics
	Lie–Jordan Banach algebras and dynamical correspondence
	Quantum Reduction
	Reduction of C*–algebras
	Reduction of Lie–Jordan algebras

	Supersymmetric extension of Lie–Jordan Banach algebras

