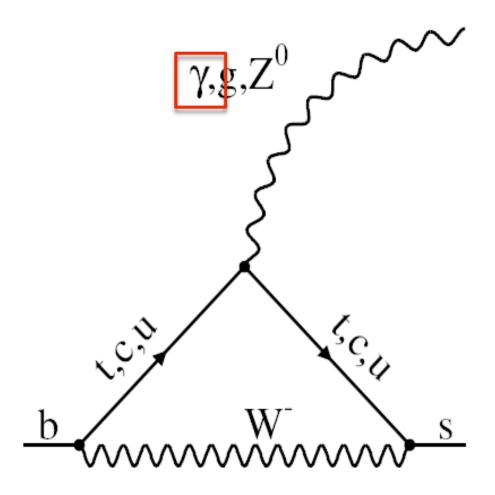


Radiative B Decays in LHCb

International Meeting on Fundamental Physics

Albert Puig



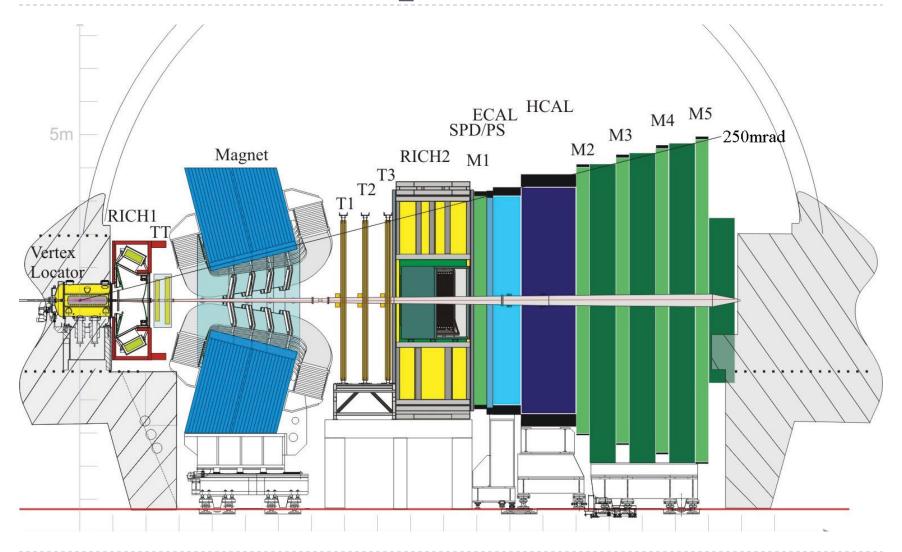
Radiative B Decays in LHCb

International Meeting on Fundamental Physics

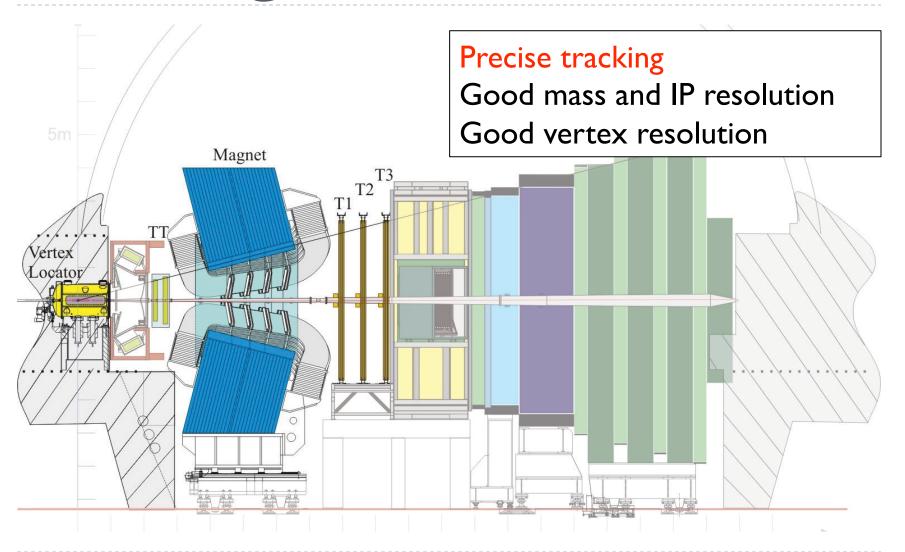
Albert Puig

Penguin decays of B mesons

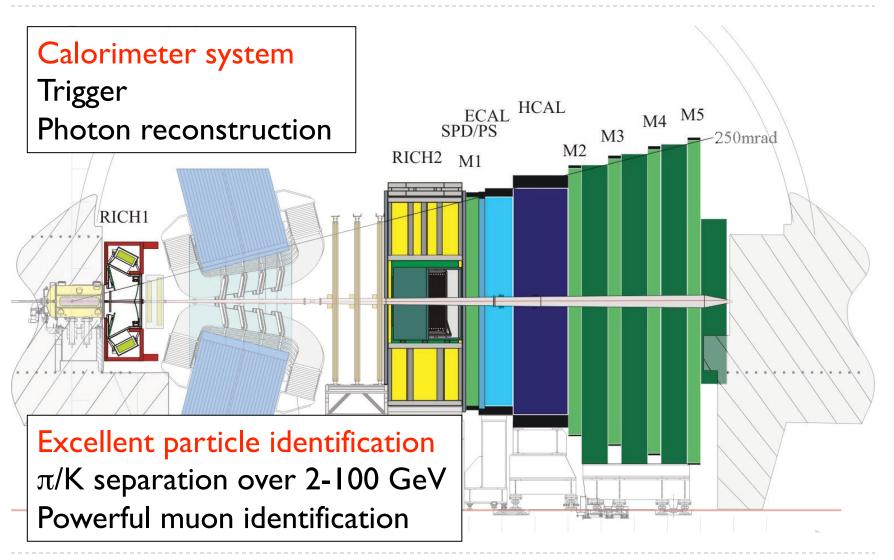
- In the SM, flavor-changing neutral currents (FCNC) are forbidden
- Effective FCNC are introduced by penguin diagrams.
 - Combinations of CKM matrix elements
 - Sensitive to new physics (NP)



Radiative B Decays in LHCb


International Meeting on Fundamental Physics

Albert Puig

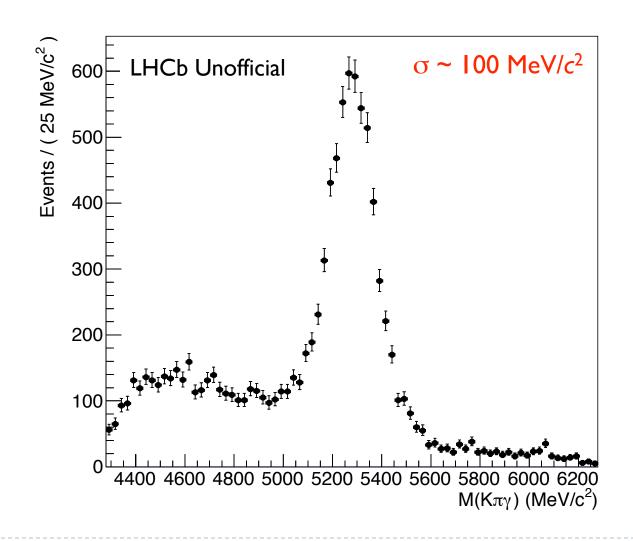

The LHCb experiment

Tracking

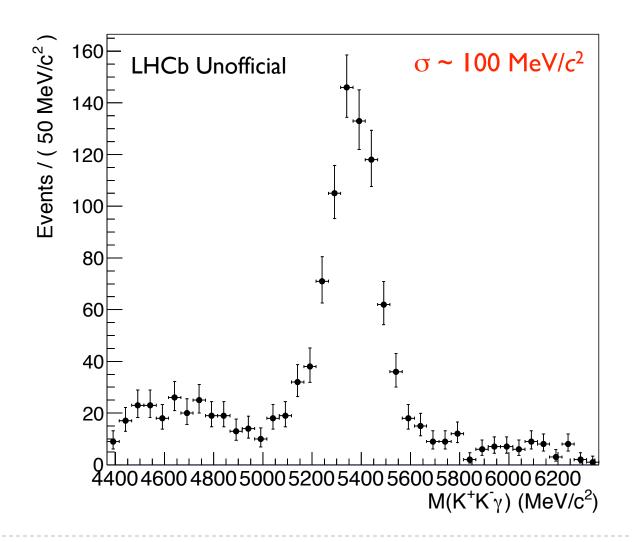
Particle identification

Experimental challenges in LHCb

Trigger
Photon reconstruction
Backgrounds

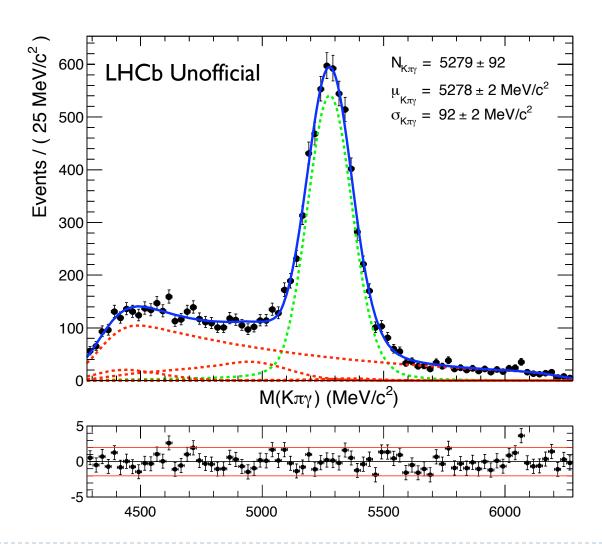

Trigger in LHCb

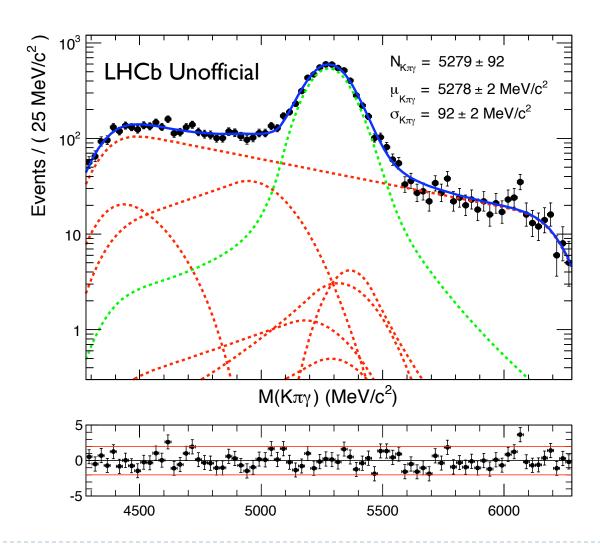
- High Level (Software) Trigger bandwidth is dominated by
 - ► Muon trigger (1/3)
 - ▶ Topological trigger (1/3)
- ▶ Topological trigger only uses tracks, K_S and Λ^0 , so it doesn't take into account photons


Trigger for radiative B decays

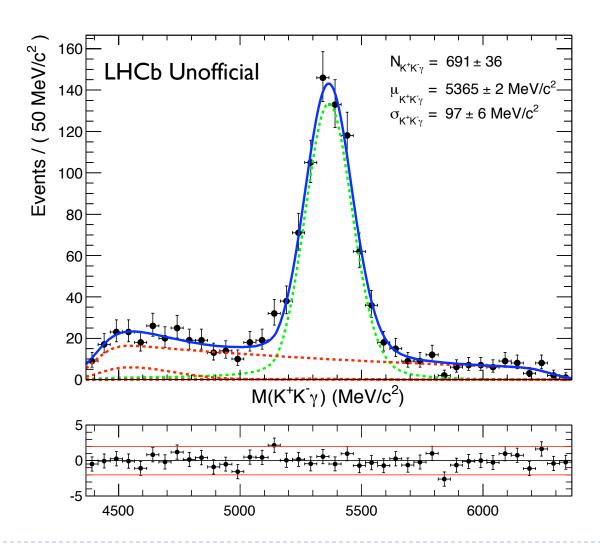
- In 2010
 - ► Exclusive lines for $B_s \rightarrow \phi \gamma$ and $B \rightarrow K^* \gamma$
- ▶ In 2011
 - ► Exclusive lines for $B_s \rightarrow \phi \gamma$ and $B^0 \rightarrow K^* \gamma$
 - Radiative topological trigger, which makes use of the photon information
- ▶ In 2012
 - ▶ Radiative topological trigger

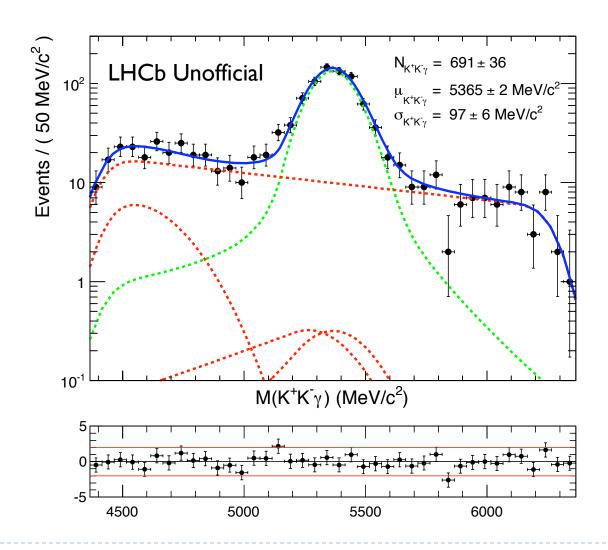
$B^0 \rightarrow K^* \gamma \text{ in } 2011$


$B_s \rightarrow \phi \gamma \text{ in } 2011$


Background sources

- Combinatorial background
- Merged π⁰
- ▶ Partially reconstructed B decays
- Baryonic radiative decays
- Signal cross-feed


$B \rightarrow K^* \gamma \text{ in LHCb } (1 \text{ fb}^{-1})$


$B \rightarrow K^* \gamma \text{ in LHCb } (1 \text{ fb}^{-1})$

$B_s \rightarrow \phi \gamma$ in LHCb (1 fb⁻¹)

$B_s \rightarrow \phi \gamma$ in LHCb (1 fb⁻¹)

Measurements in LHCb

Ratio of branching fractions Direct CP asymmetry

Branching fractions

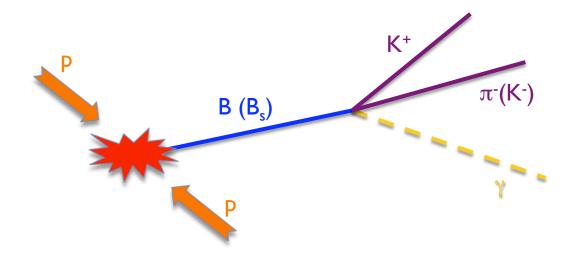
Low predicting power due to hadronization uncertainties

	$B^+ \to K^+ \gamma (\times 10^{-5})$	$B^0 \to K^{*0} \gamma (\times 10^{-5})$	$B_s^0 \to \phi \gamma (\times 10^{-5})$
Theory	4.6 ± 1.4	4.3 ± 1.4	4.3 ± 1.4
CLEO	$3.76^{+0.89}_{-0.83} \pm 0.28$	$4.55^{+0.72}_{-0.68} \pm 0.34$	_
BABAR	$4.22 \pm 0.14 \pm 0.16$	$4.47 \pm 0.10 \pm 0.16$	_
Belle	$4.25 \pm 0.31 \pm 0.24$	$4.01 \pm 0.21 \pm 0.17$	$5.7^{+1.8}_{-1.5} {}^{+1.2}_{-1.1}$
HFAG	4.21 ± 0.18	4.33 ± 0.15	$5.7^{+2.1}_{-1.8}$
·			

First LHCb measurement

Ratio of radiative branching fractions

$$\frac{\mathcal{B}(B^0 \to K^{*0}\gamma)}{\mathcal{B}(B_s \to \phi\gamma)} = \frac{N_{sig}^{B^0 \to K^{*0}\gamma}}{N_{sig}^{B_s \to \phi\gamma}} \frac{\mathcal{B}(\phi \to K^+K^-)}{\mathcal{B}(K^* \to K^+\pi^-)} \frac{f_s}{f_d} \frac{\epsilon_{B_s \to \phi\gamma}}{\epsilon_{B^0 \to K^{*0}\gamma}}$$


in a way that most systematic effects cancel

► Extract the $B_s \rightarrow \phi \gamma$ from the HFAG value of the $B \rightarrow K^* \gamma$ branching fraction

$$\mathcal{B}(B^0 \to K^{*0}\gamma) = (4.3 \pm 0.15) \times 10^{-5}$$

Systematics cancellation

- Achieved through the same candidate reconstruction and selection process:
 - I. Build V meson from two oppositely charged tracks
 - 2. Select high E_T photons
 - 3. Combine the meson a with photon to build B

Extraction of the ratio of BRs

$$\frac{\mathcal{B}(B^0 \to K^{*0}\gamma)}{\mathcal{B}(B_s \to \phi\gamma)} = \begin{bmatrix} N_{sig}^{B^0 \to K^{*0}\gamma} \\ N_{sig}^{B_s \to \phi\gamma} \end{bmatrix} \frac{\mathcal{B}(\phi \to K^+K^-)}{\mathcal{B}(K^* \to K^+\pi^-)} \begin{bmatrix} f_s \\ f_d \end{bmatrix} \frac{\epsilon_{B_s \to \phi\gamma}}{\epsilon_{B^0 \to K^{*0}\gamma}}$$

- From fit to the data
- From PDG
- From LHCb measurement (arXiv:hep-ex/ 1111.2357v1)
- From simulation and data

Result with 370 pb-1 "/202.626>

▶ Published 370pb⁻¹, Ifb⁻¹ update in preparation

$$\frac{\mathcal{B}(B \to K^* \gamma)}{\mathcal{B}(B_s \to \phi \gamma)} = 1.12 \pm 0.08 \,(\text{stat}) \,_{-0.04}^{+0.06} \,(\text{syst}) \,_{-0.08}^{+0.09} \,(f_s/f_d)$$
$$\mathcal{B}(B_s \to \phi \gamma) = (3.9 \pm 0.5) \times 10^{-5}$$

World best measurement!

Compatible with previous result from Belle but with lower uncertainty

$$\mathcal{B}(B_s \to \phi \gamma) = (5.7^{+2.1}_{-1.8}) \times 10^{-5}$$

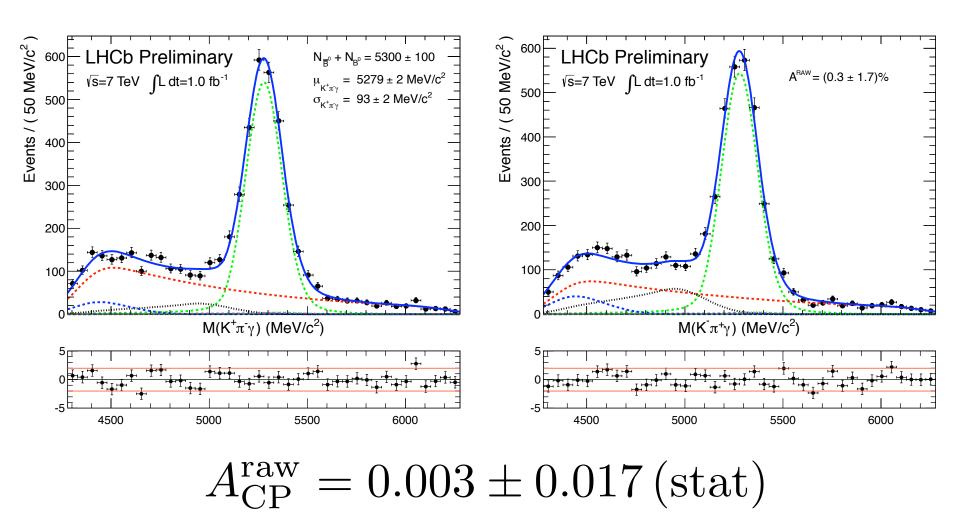
Direct CP asymmetries

- Uncertainties due to form factors largely cancel
- ▶ In B \rightarrow K* γ CP asymmetry is suppressed by m_{s,d}/m_b
 - ▶ Theoretically, values of O(1%) with uncertainties ~0.5%
 - Experimental status from BaBar and Belle

$$\mathcal{A}_{CP}^{0} = -(1.6 \pm 2.2 \pm 0.7)\%$$

$$\mathcal{A}_{CP}^{+} = (1.8 \pm 2.8 \pm 0.7)\%$$

$$\mathcal{A}_{CP}^{\text{combined}} = -(0.3 \pm 1.7 \pm 0.7)\%$$


- ▶ In B $\rightarrow \rho \gamma$, one finds O(10%) predictions in the SM
 - More challenging experimentally

$$A_{CP}$$
 in $B \rightarrow K^* \gamma$

$$A_{\mathrm{CP}} = A^{\mathrm{raw}}(B^0 \to K^{*0}\gamma) - A_D(K\pi) - \kappa A_P(B^0)$$
 dilution factor due to oscillation

- ▶ A^{raw} is extracted from fit
 - ▶ Simultaneous fit of the two flavors B^0 and \overline{B}^0
 - Observables: sum of yields and CP asymmetry
- ▶ A_P and A_D extracted from $B \rightarrow hh$
- κ calculated from data

Raw asymmetry

A_{CP} in $B \rightarrow K^* \gamma$ in $1fb^{-1}$

Putting all the results together we obtain

$$A_{\rm CP} = 0.008 \pm 0.017 \, ({\rm stat}) \pm 0.009 \, ({\rm syst})$$

- ▶ This result improves by 18% the most precise measurement up-to-date
- Compatible with the SM prediction

Prospects in LHCb

Direct CP asymmetries $b \rightarrow d\gamma$ transitions Photon polarization

Ongoing analyses

Direct CP asymmetries

- $B^+ \longrightarrow K^{*0} \pi^+ \gamma$
- $\triangleright B^+ \rightarrow \phi K^+ \gamma$
- ▶ Studies of B $\rightarrow \rho \gamma$
 - Branching fractions
 - Access to V_{td} CKM matrix element

Photon polarization

- (Time dependent CP-violation parameters in $B_s \to \phi \gamma$)
- ▶ Up/down asymmetry and Dalitz analysis in $B \rightarrow K_1(K\pi\pi)\gamma$
- Angular distributions
 - $\rightarrow B^+ \rightarrow \phi K^+ \gamma$
 - $\wedge \Lambda_{\rm b} \to \Lambda \gamma$

Isospin asymmetry in B \rightarrow K* γ ?

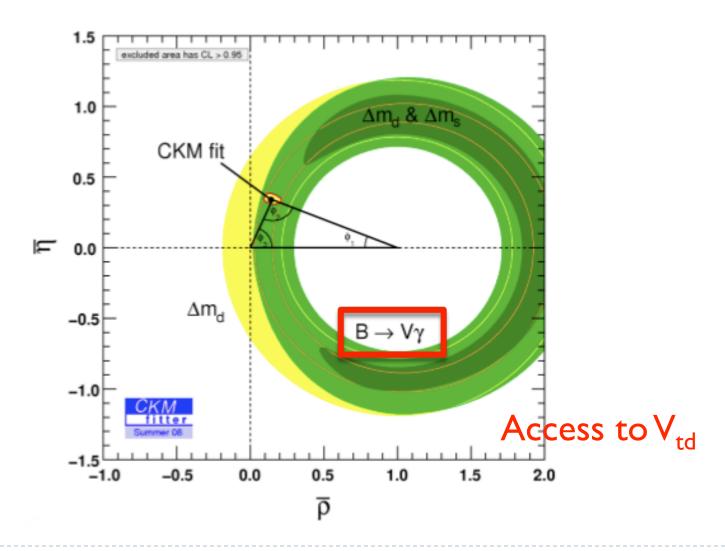
$$\Delta_{0+}(B^0 \to K^{*0}\gamma) = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$$

- Strong sensitivity to NP effects
 - New physics in C_7 - C_7 plane: hep-ph/1104.3342
 - Constrains on MSSM and mSUGRA
- Experimental challenges in LHCb arising from K_S or π^0 in charged K^* decay

Summary

- Radiative B decays are sensitive probes to NP
- While BRs are difficult to predict theoretically, there is plenty of NP-sensitive observables
- The first results from LHCb have largely improved the previous results
- Many interesting prospects

Exciting times ahead!


Thank you

Theoretical

Standard Model predictions

- Predictions on exclusive radiative B decays decays are difficult due to hadronization
- SCET is used to obtain deeper understanding of factorization theorems
 - Perturbative calculations completely known up to NLO, partially up to NNLO
 - Non-perturbative calculations performed with light cone sum rules

Branching fractions of b→dγ

Photon polarization

$$\lambda_{\gamma} = \frac{|\mathcal{A}_R|^2 - |\mathcal{A}_L|^2}{|\mathcal{A}_R|^2 + |\mathcal{A}_L|^2}$$

- Admixture of photons with the "wrong" polarization can be large in SM extensions
 - Left Right Symmetric Model (LSRM), unconstrained MSSM, models with non-supersymmetric extra dimensions
- ▶ Measure as "null test", since photons are ~100% polarized in the SM

Time-dependent CP asymmetry

▶ Time evolution of B $\rightarrow \Phi^{CP} \gamma$

$$\Gamma_{B_{(s)}^{0} \to \Phi^{CP}\gamma}(t) = |A|^{2} e^{-\Gamma_{(s)}t} \left(\cosh \frac{\Delta \Gamma_{(s)}t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_{(s)}t}{2} + \mathcal{C} \cos \Delta m_{(s)}t - \mathcal{S} \sin \Delta m_{(s)}t\right)$$

$$\Gamma_{\bar{B}_{(s)}^{0} \to \Phi^{CP}\gamma}(t) = |A|^{2} e^{-\Gamma_{(s)}t} \left(\cosh \frac{\Delta \Gamma_{(s)}t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_{(s)}t}{2} - \mathcal{C} \cos \Delta m_{(s)}t + \mathcal{S} \sin \Delta m_{(s)}t\right)$$

$$-\mathcal{C} \cos \Delta m_{(s)}t + \mathcal{S} \sin \Delta m_{(s)}t$$

Time-dependent CP asymmetry can be used to probe the photon polarization through the CP-violation parameters

Time-dependent CP-asymmetry

In the SM

sum of $B_{(s)}$ mixing phase and CP-odd weak phases for right and left amplitudes

phases for right and left amplitudes
$$\mathcal{C} \approx 0$$

$$\mathcal{S} \approx \sin 2\psi \sin \varphi_{(s)}$$

$$\mathcal{A}^{\Delta} \approx \sin 2\psi \cos \varphi_{(s)}$$

$$\tan \psi \equiv \left| \frac{\mathcal{A}(\bar{B}_{(s)} \to \Phi^{CP} \gamma_R)}{\mathcal{A}(\bar{B}_{(s)} \to \Phi^{CP} \gamma_L)} \right| \longrightarrow \lambda_{\gamma} = \cos 2\psi$$

lacktriangle Therefore, S and \mathcal{A}^{Δ} give access to the fraction of "wrongly"-polarized photons

Photon polarization in B⁰

 $ightarrow \Delta \Gamma/\Gamma$ is negligible, so terms proportional to \mathcal{A}^{Δ} vanish

$$\Gamma_{B^0 \to \Phi^{CP}\gamma}(t) = |A|^2 e^{-\Gamma t} (1 + \mathcal{C}\cos\Delta mt - \mathcal{S}\sin\Delta mt)$$

$$\Gamma_{\bar{B}^0 \to \Phi^{CP}\gamma}(t) = |A|^2 e^{-\Gamma t} (1 - \mathcal{C}\cos\Delta mt + \mathcal{S}\sin\Delta mt)$$

Also one expects in the SM

$$\varphi = \sin(2\beta - \phi_p)^{\text{CP-odd weak penguin phase}}$$

Therefore

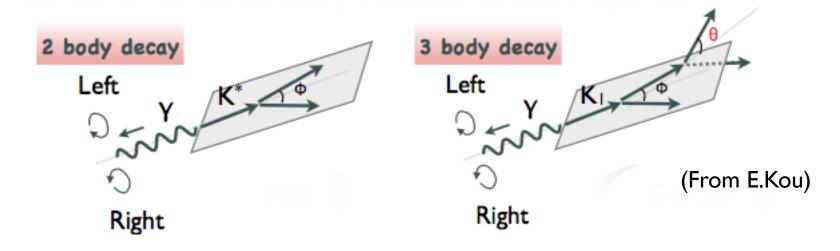
$$S_{B^0} = \sin 2\psi \sin 2\beta$$

Photon polarization in B_s

 $ightharpoonup \Delta\Gamma/\Gamma$ is not negligible, and

$$\varphi_s = \sin(2\beta_s - \phi_p) \approx 0$$

so the term with S vanishes


$$\Gamma_{B_s^0 \to \Phi^{CP} \gamma}(t) = |A|^2 e^{-\Gamma_s t} \left(\cosh \frac{\Delta \Gamma_s t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta \Gamma_s t}{2} \right)$$

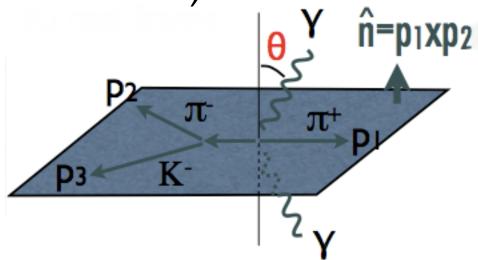
$$\Gamma_{\bar{B}_s^0 \to \Phi^{CP} \gamma}(t) = \Gamma_{B_s^0 \to \Phi^{CP} \gamma}(t)$$

Therefore

$$\mathcal{A}_{B_s^0}^{\Delta} \approx \sin 2\psi$$

Photon polarization in 3-body

Why 3 body?



Symmetric along the helicity axis

Angle wrt to the plane

B \rightarrow K₁(Kππ)γ with Gronau method

 Up/down asymmetry (Gronau, Grossman, Pirjol, Ryd hep-ph/0107254)

$$\mathcal{A} = \frac{\int_0^{\pi/2} d |\mathcal{M}|^2 d \theta - \int_{\pi/2}^{\pi} d |\mathcal{M}|^2 d \theta}{\int_0^{\pi} d |\mathcal{M}|^2 d \theta}$$

B \rightarrow K₁(Kππ)γ with Gronau method

$$\mathcal{A} = \frac{\int_0^{\pi/2} d |\mathcal{M}|^2 d\theta - \int_{\pi/2}^{\pi} d |\mathcal{M}|^2 d\theta}{\int_0^{\pi} d |\mathcal{M}|^2 d\theta}$$
$$= \frac{\langle \operatorname{Im}(\hat{n} \cdot (\vec{J} \times \vec{J}^*)) \rangle}{\langle |\vec{J}|^2 \rangle} \frac{|C'_{7\gamma}|^2 - |C_{7\gamma}|^2}{|C'_{7\gamma}|^2 + |C_{7\gamma}|^2}$$

Helicity amplitude

Polarization parameter λ

$B \rightarrow K_1(K\pi\pi)\gamma$ with DDLR method

- The polarization information is both in the angular distribution and in the Dalitz distribution (E.Kou, Le Yaouanc, A.Tayduganov, PRD83 (2011))
- \blacktriangleright Simplify the analysis using the ω variable

$$\omega(s_{13},s_{23},\cos\theta)\equiv rac{2\operatorname{Im}(\hat{n}\cdot(\vec{J} imes\vec{J}^*))\cos\theta}{|\vec{J}|^2(1+\cos^2\theta)}$$
 $\lambda=rac{\langle\omega
angle}{\langle\omega^2
angle}$

$B \rightarrow K_1(K\pi\pi)\gamma$ with DDLR method

- ▶ Usage of $K_1(1270)\gamma$, observed by Belle
- ▶ Hadronic information (J) extracted from data
 - Model independent analysis helps reduce uncertainties

$\sigma_{\lambda_{\gamma}}$ (statistical error)	$N_{events} = 10^3$	$N_{events} = 10^4$
$B^+ \to (K^+\pi^-\pi^+)_{K_1(1270)}\gamma$	$\pm~0.18$	± 0.06
$B^+ \to (K^0 \pi^+ \pi^0)_{K_1(1270)} \gamma$	$\pm~0.12$	$\pm~0.04$
$B^0 \to (K^0 \pi^+ \pi^-)_{K_1(1270)} \gamma$	$\pm \ 0.18$	± 0.06
$B^0 \to (K^+\pi^-\pi^0)_{K_1(1270)}\gamma$	$\pm~0.12$	± 0.04

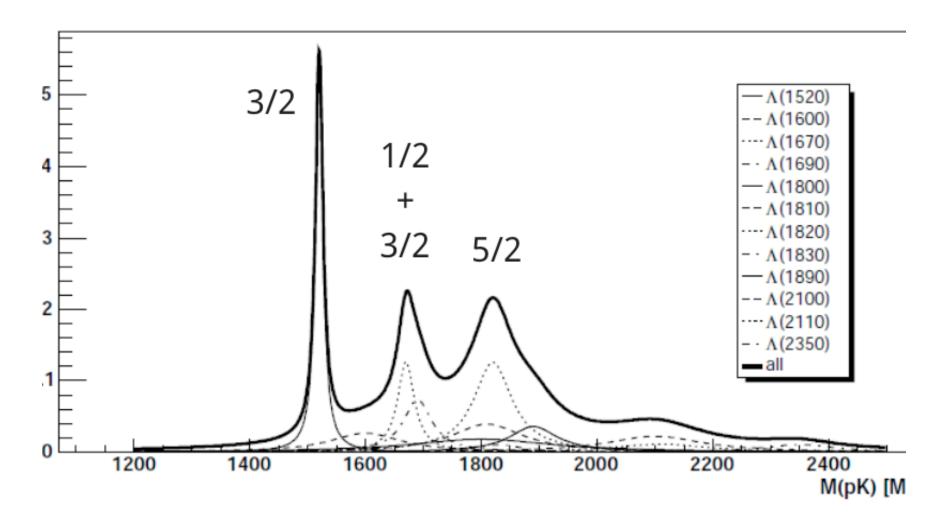
Photon polarization in $B^+ \rightarrow \phi K^+ \gamma$

- Use angular distribution to extract λ (Orlovsky, Shevchenko, PRD77 2008)
- Strong interference between the partial waves in the (ϕK) system with K in the vector state is necessary
 - If not, interference pattern becomes too complicated to extract experimental results

Photon polarization in Λ_b

▶ $Λ_b \rightarrow Λ\gamma$ decays also allow to access photon polarization from angular analysis (Legger, Schietinger hep-ph/0605245)

- Λ_b are expected to be polarized in the LHC
- Two decay topologies
 - $\Lambda_b \to \Lambda^0(\pi p) \gamma$ with $J(\Lambda^0(1115)) = \frac{1}{2}$
 - $\wedge \Lambda_b \to \Lambda^*(pK)\gamma$


$\Lambda_{\rm b} \to \Lambda^0 (11115) \gamma$

- Two observables to access photon polarization
 - Photon angular distribution
 - Proton angular distribution
- ▶ Topology different than $B^0 \to K^* \gamma$
 - $ightharpoonup \Lambda^0$ flies through the detector

$\Lambda_{\rm b} \to \Lambda^*(X)\gamma$

- Several resonances over the pK threshold
 - ► Similar topology to $B^0 \to K^* \gamma$
 - Overlapping poorly known states w/different spins
- Two cases
 - ▶ $J=\frac{1}{2}$ is a parity conserving decay, has only one observable: photon distribution
 - ▶ J=3/2 is more complex, sensitivity depends on the ratio of the J=1/2 and J=3/2 states

$\Lambda_{\rm b} \to \Lambda^*(X) \gamma$ cases

$\Lambda_{\rm b} \to \Lambda^*(X) \gamma$ cases

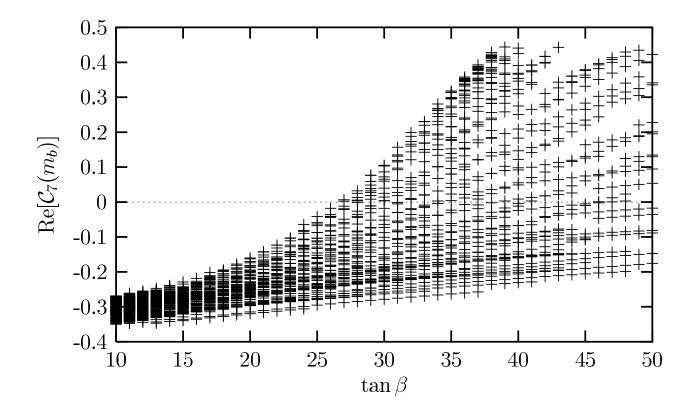
- Λ^* (1520) is well stablished
 - ▶ J=3/2, so maybe not sensitive to photon polarization
 - ▶ Small contamination from poorly known $\Lambda^*(1600)$
- \wedge $\Lambda^*(1670)$ and $\Lambda^*(1690)$ are not well known
 - $\Lambda^*(1670)$ is J=1/2 and $\Lambda^*(1690)$ is J=3/2
 - Contamination from other poorly known states
 - ▶ Can they be resolved?

Isospin asymmetry status

Theory predictions

$$\Delta_{0-}(B^0 \to K^{*0}\gamma)_{\text{Kagan}} = (+8.0^{+2.1}_{-3.2})\% \times 0.3/T_1^{B \to K^*}$$

$$(T_1^{B \to K^*} \text{ estimates go from } 0.23 \pm 0.06 \text{ to } 0.38 \pm 0.06)$$

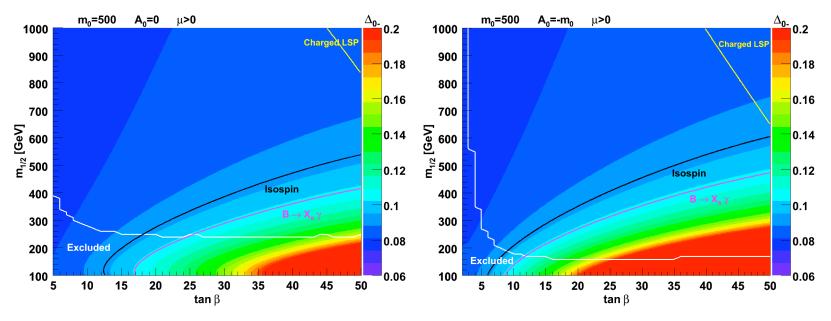

$$\Delta_{0+}(B^0 \to K^{*0}\gamma)_{\text{Matsumori}} = +(2.7 \pm 0.8)\%$$

Experimental results

$$\Delta_{0+}(B^0 \to K^{*0}\gamma)_{\text{Belle}} = +(1.2 \pm 4.4 \pm 2.6)\%$$

 $\Delta_{0-}(B^0 \to K^{*0}\gamma)_{\text{BaBaR}} = +(6.6 \pm 2.1 \pm 2.2)\%$

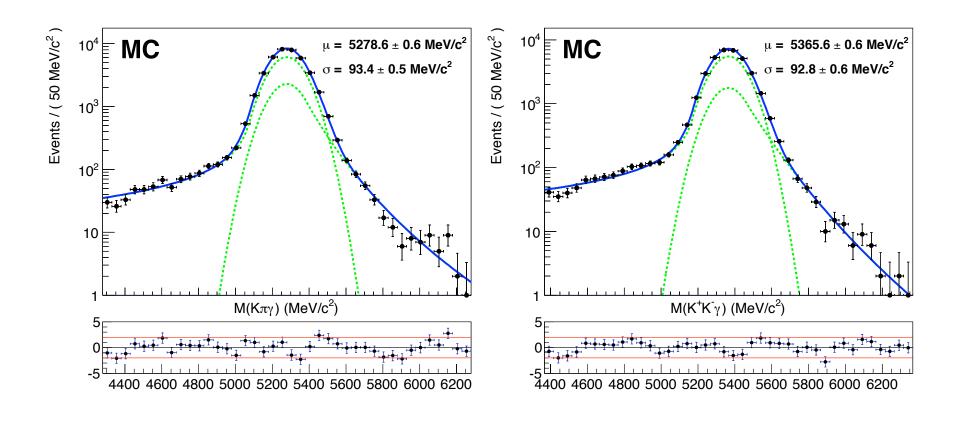
Isospin asymmetry and MSSM


Positive values of Re(C₇), which flip the sign of Δ_{0} , become more probable as tan β increases

Isospin asymmetry and mSUGRA

Constrain the mSUGRA parameter space

Isospin asymmetry is more restrictive than inclusive $B \rightarrow X_s \gamma$


ArXiV:hep-ph/0608212

Experimental

Signal shape

- Combination of two Crystal Ball distributions (gaussian + potential tail)
 - Radiative effects at low mass
 - Error distribution of invariant B mass generates a tail at high masses

Signal shape

Background determination

- Shape of backgrounds fixed from MC
- Contamination of backgrounds
 - Fixed from MC in contaminations under the peak
 - Free in the case of partially reconstructed background

Ratio of yields

- Extracted from the fit
- Systematical uncertainties
 - Signal shape parameters
 - Fixed background shapes and contaminations
 - Trigger acceptance function

Ratio of efficiencies

From MC / data

$$\frac{\epsilon^{B_s^0 \to \phi \gamma}}{\epsilon^{B^0 \to K^{*0} \gamma}} = \frac{\epsilon_{\text{Trigger}}^{B_s^0 \to \phi \gamma}}{\epsilon_{\text{Trigger}}^{B^0 \to K^{*0} \gamma}} \times \frac{\epsilon_{\text{Acceptance}}^{B_s^0 \to \phi \gamma}}{\epsilon_{\text{Acceptance}}^{B^0 \to K^{*0} \gamma}} \times \frac{\epsilon_{\text{Reco\&SelNoPID}}^{B^0 \to \phi \gamma}}{\epsilon_{\text{Reco\&SelNoPID}}^{B^0 \to K^{*0} \gamma}} \times \frac{\epsilon_{\text{PID}}^{B_s^0 \to \phi \gamma}}{\epsilon_{\text{PID}}}^{B^0 \to K^{*0} \gamma}}$$

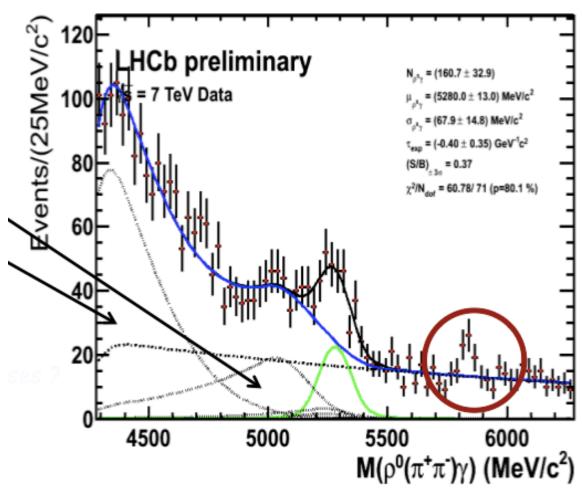
LHCb measurement with 1fb⁻¹

Paper in preparation

$$\frac{\mathcal{B}(B^0 \to K^{*0}\gamma)}{\mathcal{B}(B_s^0 \to \phi\gamma)} = 1.31 \pm 0.08 \,(\text{stat}) \pm 0.04 \,(\text{syst}) \pm 0.10 \,(f_s/f_d)$$
$$\mathcal{B}(B_s^0 \to \phi\gamma) = (3.3 \pm 0.3) \times 10^{-5}$$

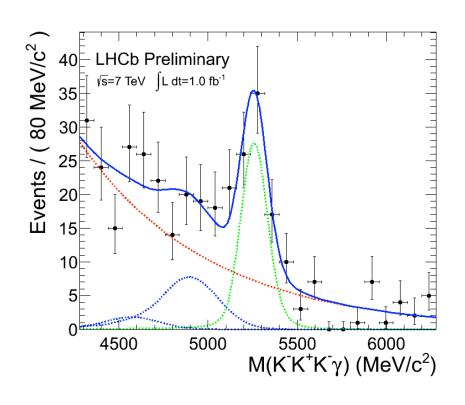
World best measurement!

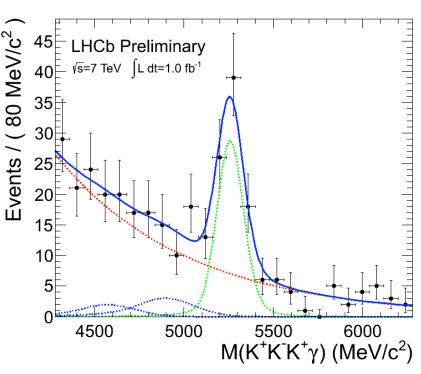
Compatible with previous result from Belle but with lower uncertainty


$$\mathcal{B}(B_s \to \phi \gamma) = (5.7^{+2.1}_{-1.8}) \times 10^{-5}$$

Systematics in A_{CP}

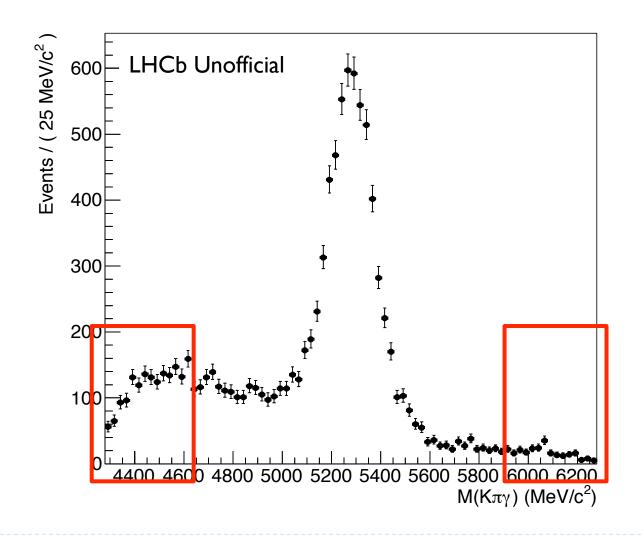
- From the fit model
 - Background shape and contamination
 - CP asymmetry of background
- Magnet polarity


$B \rightarrow \rho \gamma$


From O.Deschamps

From R.Vazquez

Triggering radiative B decays


In 2010-2011

- ► Exclusive lines for $B^0 \rightarrow K^* \gamma$ and $B_s \rightarrow \phi \gamma$
- Inclusive φ line
- ▶ Since mid-2011
 - Radiative topological lines: topological HLT2 + photon information
 - Similar efficiency, triggers all 2track+photon decays

B→Vy selections

		$B^0 \to K^{*0} \gamma$	$B_s^0 o \phi \gamma$
Track χ^2		< 5	< 5
Track IP χ^2		> 25	> 25
Track $p_{\rm T}$	(MeV/c)	> 500	> 500
Max track $p_{\rm T}$	(MeV/c)	> 1200	> 1200
Kaon $PID_{K\pi}$		> 5	> 5
Kaon PID_{Kp}		> 2	> 2
Pion $PID_{K\pi}$		< 0	_
V meson vertex $\Delta \chi^2$		< 9	< 9
V meson ΔM_{PDG}	(MeV/c^2)	< 50	< 9
Photon $E_{\rm T}$	(MeV)	> 2600	> 2600
Photon CL		> 0.25	> 0.25
π^0/γ separation		> 0.5	> 0.5
B candidate $p_{\rm T}$	(MeV/c)	> 3000	> 3000
B candidate IP χ^2		< 9	< 9
B candidate DIRA	(mrad)	< 20	< 20
B candidate FD χ^2		> 100	> 100
B candidate ΔM_{PDG}	$({ m MeV}/c^2)$	< 1000	< 1000
$B \text{ candidate } \cos \theta_H $		< 0.8	< 0.8
B candidate isolation $\Delta \chi^2$		> 2	> 2

Trigger acceptance

