

Tevatron Latest Results

XL International Meeting in Fundamental Physics Benasque 25th May – 2nd June 2012

Jesús Vizán

Université catholique de Louvain

Outline

The Tevatron collider and the experiments
QCD
Heavy Flavor Physics
Electroweak Physics
Top Quark Physics
Beyond the SM

The Tevatron Collider

- □ Proton-Antiproton collider at $\sqrt{s=1.96}$ TeV
- Located at Fermilab, Illinois (USA)

- Operated between 1985 until September of 2011
- Beams collided at 2 locations where CDF and DO experiments collected their data
- □ ~12 fb⁻¹delivered. ~10 fb⁻¹ collected by each

experiment

Physics Runs

1987	Run 0 - 4 pb ⁻¹
1992-1996	Run 1 - 120 pb ⁻¹
2001-2011	Run 2 – 12 fb ⁻¹

CDF and D0

Major detector upgrades for Run 2

CDF and D0

Clasical design for multipurpose detectors

- Silicon high precision vertex detectors
- Tracking chambers in magnetic field
- > 4 π calorimetry with EM preshowers
- Muon detectors (outside)
- Axial and forward-backward symmetry

Tevatron Physics Program

□ Vast physics program at Tevatron

➤ +80 new results since the Tevatron shutdown

Multijet production
 Heavy-flavour production
 Electroweak boson production
 Top production
 Higgs
 Will be covered in Higgs session tomorrow
 Searches

□ Important tests of the SM

- Test pQCD
- Jet properties: internal structure, models for Parton shower and Underlying Event models
- □ showing results on
 - \succ Z+ jets, γ + jets
 - ➢ W+jets in back-up slides

D0: http://www-d0.fnal.gov/Run2Physics/qcd/D0_public_QCD.html

CDF: http://www-cdf.fnal.gov/physics/new/qcd/QCD.html

Z+n-jet data vs (approx. nNLO) LOOPSIM+MCFM, (LO and NLO) MCFM, (LO and NLO) BLACKHAT+SHERPA, (ME+PS) ALPGEN+PYTHIA, (NLO+PS) POWHEG+PYTHIA

QCD: σ(Z+b)/ σ(Z+jet)

- At least one central muon or electron with $|\eta| < 1.0$, $P_T > 20$ GeV
- Jets: MidPoint Cone R=0.7, |y| < 1.5, $P_T > 20$ GeV
- \circ $\Delta R(lepton, jet) > 0.7$
- o Comparison to NLO MCFM
- Measured as ratios $\sigma(Z+b)/\sigma(Z)$, $\sigma(Z+b)/\sigma(Z+jet)$

In good agreement with NLO

Full CDF Dataset

CDF conf. note 10594

preliminary

QCD: Direct γ in association with heavy quark Measured $\sigma(\mathbf{y} + \mathbf{c} + \mathbf{X})$ and $\sigma(\mathbf{y} + \mathbf{b} + \mathbf{X})$ as a function of E_{τ}^{γ} 0 $30 < E_T^{\gamma} < 300 \text{ GeV}, |\gamma^{\gamma}| < 1.0 \text{ Reasonably good agreement at NLO for low } E_T^{\gamma}$ 0 Jets: |y|<1.5, E_T>20 GeV 0 **Data** σ higher than NLO at high are higher with NLO **CDF Run II Preliminary** CDF Run II Preliminary dơ/d⊑⁷ (pb/GeV) 01 1 do/dE⁷ (pb/GeV) CDF y+jets data, L=9.1 fb⁻¹ CDF y+jets data, L=9.1 fb⁻¹ — γ+b+X γ+c+X Systematic uncertainty Systematic uncertainty NLO (Stavreva, Owens) NLO (Stavreva, Owens) **Full CDF Dataset** PYTHIA PYTHIA PYTHIA, mstj(42)=4, mstj(44)=3 PYTHIA, mstj(42)=4, mstj(44)=3 **Preliminary** 10⁻² ****** **CDF note 10818** 10⁻² 10^{-3} 10⁻³ 50 100 150 200 250 30 50 100 150 250 300 200 E_{T}^{γ} (GeV) E_{T}^{γ} (GeV)

 σ (pp→γ + b + X; 30 < E_T^γ< 300 GeV, P_T^b >20 GeV) = 19.7±0.7(stat)±5.0(syst) pb σ (pp→γ + c + X; 30 < E_T^γ< 300 GeV, P_T^c >20 GeV) = 132.2±4.6(stat)±19.2(syst) pb

NLO prediction $\sigma(\gamma + b + X) = 27.3^{+2.3}_{-1.5} \text{ pb }; \sigma(\gamma + c + X) = 152.6^{+12.2}_{-9.6} \text{ pb}$

Heavy Flavor

- Large production cross sections, datasamples
- Broad heavy flavour physics program
- Latest results
 - CPV in charm with Full CDF Run II dataset
 - > Search for $B \rightarrow \mu\mu$ with Full CDF Run II dataset
 - > CPV in B_s mixing CDF and D0
 - > D0 new state decaying into Y(1S)+ γ
- D0: http://www-d0.fnal.gov/Run2Physics/WWW/results/b.html
- CDF: http://www-cdf.fnal.gov/physics/new/bottom/bottom.html

Full CDF Dataset

Preliminary

HF: CP violation in charm

HF: Search for new physics in B_S mixing

A broad class of BSM models can introduce significant CP violation in Bs mixing
 Mixing phase through B_S→J/ψ φ decays

HF: $B \rightarrow \mu\mu$

SM rates well understood

 $BR(B_{s}^{\ 0} \rightarrow \mu^{+} \mu^{-}) = (3.2 \pm 0.2) \times 10^{-9}, BR(B^{0} \rightarrow \mu^{+} \mu^{-}) = (1.0 \pm 0.1) \times 10^{-10}$

□ Interesting 2.5σ deviation from bkg seen by CDF with 7 fb⁻¹→Recently updated with full dataset (10 fb⁻¹) CC 0.70 < v_N < 0.97 0.97 0.987 0.987 0.987 v_N < 0.995 v_N > 0.995 v

oClean Signature

- Trigger on 2 μ P_T>1.5-2 GeV oChallenge: reject 10⁶ larger bkg.

- Use NN classifier (uses 14 input variables)

 $\odot Combinatorial bkg predicted from mass sideband (dominant) and fake rates for B <math display="inline">\!\!\!\!\to \!\!\!h^+\!h^-$

□ Limits on BR($B \rightarrow \mu \mu$) consistent with SM

 $0.8 \times 10^{-9} < BR(B_s \rightarrow \mu\mu) < 3.4 \times 10^{-8} @95\% C.L. \ \ BR=(1.3^{+0.9}_{-0.7}) \times 10^{-8} \ > 2\sigma$ for bkg only hypothesis. p-value 0.94% (bkg only) 7.1% bkg + SM signal

HF: New state decaying into Y(1S)+ γ

□ Confirm ATLAS observation of $\chi_{b}(3P) \rightarrow Y(1S) + \gamma$

 $M[\chi_{b}(3P)] = 10.551 \pm 0.014 \pm 0.017 \text{ GeV}$

1.3 fb⁻¹D0 Dataset Submitted to Phys. Lett. B arXiv: 1203.6034

IMFP 2012

Electroweak

Focus mainly on
 W mass CDF and D0 results
 Dibosons at Tevatron

D0: http://www-d0.fnal.gov/Run2Physics/WWW/results/ew.htm

CDF: http://www-cdf.fnal.gov/physics/ewk/

W Mass: Introduction

The W boson mass is not an input parameter, but can be calculated

$$M_W\left(1 - \frac{M_W^2}{M_Z^2}\right) = \frac{\pi\alpha}{\sqrt{2}G_\mu}(1 + \Delta r)$$

➤ Radiative corrections Δr dominated by top and Higgs Loops

Indirect dependence	δM_W
$\delta M_H = 13 GeV[114 \to 127]$	-6.2 MeV
$\delta m_t = 1.8 GeV[172.4 \to 174.1]$	10.8 MeV
Current theoretical uncertainty	4 M eV

Precision measurements in m_W and m_{top} constrain SM Higgs mass

Before Feb. 2012

W Mass

- $\circ~$ Impossible to know the parton system initial longitudinal momentum and thus $P_{Z}{}^{\nu}$
- Transverse momenta carry part of the mass info. Use bin likelihood fits to extract M_w from different kinematical distributions: m_T , P_T^{-1} , $P_T^{-\nu}$

Event Selection

DØ analysis

- Analyzed 4.3 fb⁻¹ (1 fb⁻¹ analyzed before)
- Uses $W \to e\nu$ decay channel.
- Central electrons $|\eta| < 1.05$ with $p_T > 25 \, GeV$
- Missing transverse energy $\not\!\!\!E_T > 25 \, GeV$
- Transverse mass $50 < m_T < 200 \, GeV$
- Hadronic recoil momentum $u_T < 15 \, GeV$

W Mass: Calibration strategy

- Parametrize fast simulations of the detector response to W→lv
- Parametrizations are calibrated with data, using different strategies

CDF strategy

- Detailed model of lepton interactions at the central tracker.
- Precise alignment using cosmic rays.
- Momentum scale calibrated using $J/\psi \rightarrow \mu\mu$, $\Upsilon \rightarrow \mu\mu$ and $Z \rightarrow \mu\mu$ mass fits.
- Use calibrated momentum scale and E/p distribution in $W \rightarrow e\nu$ events to calibrate the calorimeter energy scale.

DØ strategy

- Detailed model of the calorimeter response to electrons and photons.
- Detailed model of the underlying energy flow.
- Detailed model of efficiencies.
- Calibrate the calorimeter energy scale using the dielectron invariant mass and angular distribution in Z → ee decays (electron energy scale α and energy offset β).

19

- CDF momentum and D0 energy scale precision ~0.01%
- \circ Z mass fits to test the calibrations . All values consistent with LEP measurements: M_z = 91188 ± 2 MeV

Dibosons: Introduction

- Diboson production represents an important test of the EWK sector of the SM
 - Sensitive to anomalous gauge boson couplings
 - New particles in extensions of the SM
- □ Important background to top, Higgs, SUSY
- **D** Proving ground for combined Tevatron search for low mass Higgs ($H \rightarrow bb$ modes)
- □ WW, WZ, and ZZ production are among the smallest standard model cross sections

Dibosons: VV in dileptons and semileptons

WZ/ZZ with heavy flavor jets

 \Box WZ/ZZ with HF jets probing ground for H \rightarrow bb searches

 \blacktriangleright WZ/ZZ \rightarrow IIbb, lvbb, vvbb same final states as most important channels for low-mass Higgs searches at Tevatron (WH/ZH) Tevatron Run II Preliminary $H \rightarrow bb L \le 9.7 \text{ fb}^{-1}$

➢ WZ/WZ ~ 4-5 times larger cross

WZ/ZZ harder to distinguish from

section than WH/ZH

Final State	(W/Z) H (115 GeV)	(W/Z) <mark>Z</mark>
lvbb	27 fb	105 fb
llbb	5 fb	24 fb
vvbb	15 fb	73 fb

Diboson: b-tagged final state

 $\sigma(VZ)_{SM} = 4.42 \text{ pb}$

Top Physics

□ Focus mainly on

- Top mass CDF and D0 results
- Single top
- Forward-Backward asymmetry

Many other results:

- D0: http://www-d0.fnal.gov/top/top_public_web_pages/top_public.html
- CDF: http://www-cdf.fnal.gov/internal/physics/top/topnew.shtml

Top mass overview

- Difficult measurement
- Most information carried in quarks
 - But can only measure resulting jets
 - Jet-parton assignment
 - QCD radiation
- Jet energy scale (JES) uncertainty dominates [~3%]
 - Can be reduced via *in situ* measurement from hadronic W
- Mass measurement techniques
 - > Matrix element: form probabilities as function
 - Template: form templates as function of mt and JES from fully simulated events

Top mass: Analysis Strategy

- □ Semileptonic channel
 - Reconstruct top mass per event
 - > Determine χ^2 for each jet-parton pairing
 - Final state separated according to number of b-tags
 - \succ 2D fit to mt and $\triangle JES$
 - Single best measurement to date

mt=172.85±0.71(stat+JES)±0.84(syst) GeV

- Dileptonic channel
 - Kinematically underconstrained
 - New D0 measurement transfers JES uncertainty from fit in I+jets channel
 - Integrate over unknown neutrino momenta
 - Use templates to extract fit mass
 - Template: form templates as function of mt and JES from fully simulated events

mt=174.0±2.4 (stat)±1.4 (syst) GeV

Tevatron Combination will be updated soon

IMFP 2012

Jesús Vizán

Top mass vs W mass

Single Top Production

Single top: cross section and $|V_{tb}|$

□ Use 7.5 fb⁻¹ of data Events 800 Utilize NN discriminant 600 Signal modeling at NLO by POWHEG 400 Combined t-channel, s-channel and Wt associated production 200 $\sigma_{s-top} = 3.04^{+0.57}_{-0.53}$ (stat+syst) pb \blacktriangleright Assumes m_t = 172.5 GeV > NLO prediction 3.37 ± 0.34 pb ^oosterior Probability Density 0.01 \Box Use ratio to NLO prediction ($|V_{tb}| \sim 1$) 0.008 to extract measured $|V_{tb}|$ 0.006 $|Vtb| = 0.96 \pm 0.09(stat+syst) \pm 0.05$ (theo) 0.004 |Vtb| > 0.78 @ 95% CL 0.002 $|V_{tb,meas}|^2 = rac{\sigma_{meas}}{2} \cdot |V_{tb,SM}|^2$ 0.4

0.5

0.6

95%

0.7

0.8

31

68%

0.9

V_{tb}

IMFP 2012

Jesús Vizán

Top widh and lifetime from single top

□ Use measured single top cross section and BR(t→Wb) to extract width

$$\begin{split} & \Gamma_t = 2.00^{+0.47} \text{-}_{0.43} \text{ GeV} \\ & \tau_t = (3.29^{+0.90} \text{-}_{0.63}) \times 10^{-25} \text{ s} \end{split}$$

 \succ τ_t < 4.88 x10⁻²⁵s@95% CL

Most precise measurement of top width to date

 \Box Can utilize measurement to extract $|V_{tb}|$

Does not assume s- and t- channel ratios or decay BR for Wb |Vtb| > 0.81 @95% CL

Forward Backward asymmetry

∆v<0

- □ NLO QCD predicts small (~7% asymmetry from qqbar→ttbar)
 - New physics could give rise to an asymmetry (Z', axigluons,..)
- Previous measurements (~ 5fb⁻¹): large forward-background asymmetry (A_{FB}) in the production angle
 - Equivalent to a charge asymmetry
- □ A_{FB} measurement is unique to the Tevatron
 - LHC experiments can see a charge asymmetry

But it requires different techniques and the expected magnitud is much smaller
 PRD 84 (2011) 112005
 PRD 83 (2011) 112003
 CDF Conf. Note 10436

FR

Forward Backward Asymmetry

CDF updated the lepton + jets analysis with 8.7 fb⁻¹ (full dataset)

- Use NLO POWHEG + EW correction from SM prediction (previous analysis uses PYTHIA LO)
- New regularized unfolding method for correction to parton level
- \circ $\,$ 1 lepton, at least 4 jets, at least 1 btag, large MET $\,$
- o 2498 candidate events, 505 predicted background
- $\circ~$ Events reconstructed with χ^2 –based kinematic fit

In agreement with previous CDF and D0 results

34

Forward Backward Asymmetry

- \Box Additional studies on depended with Δy and M_{tt}
 - Previous studies only used 2 bins (somewhat ambiguous)
 - New regularized unfolding method for correction to te parton level

- ➤ A_{FB} dependence with |∆y| and Mtt well described by a linear Ansatz both at reconstruction and parton level
- Slope for data higher than for NLO prediction
- Significance of discrepancy between POWHEG SM prediction and data evaluated before correction to parton level: pvalue
- > p-values: 6.46x10⁻³ for A_{FB} vs M_{tt} and 8.92x10⁻³ for A_{FB} vs $|\Delta y|$

Interesting recent results both in SUSY and no SUSY searches

D0:http://www-d0.fnal.gov/Run2Physics/WWW/results/np.htmCDF:http://www-cdf.fnal.gov/physics/exotic/exotic.html

Stop in $\mu+\tau$ final states Submitted to Phys Lett. B arXiv:1202.1978

- Superpartners of the top and bottom quarks can be the lightest squarks
- □ D0 Search for $\tilde{t_1} \tilde{t_1} \rightarrow bb\mu\tau MET$ final state using 7.3 fb⁻¹
 - ➢ Assume^v is that LSP or it decays invisibly→ MET in the final state
 - > Analyze 1, 2, and \geq 2jets events separately
- $\begin{array}{ll} \square & \text{Studied scenarios:} \\ wino \ scenario: B(\tilde{t_1} \rightarrow b\mu\tilde{\nu}) = B(\tilde{t_1} \rightarrow b\tau\tilde{\nu}) = \frac{1}{3} \\ higgsino \ scenario: B(\tilde{t_1} \rightarrow b\mu\tilde{\nu}) = 0.1; \ B(\tilde{t_1} \rightarrow b\tau\tilde{\nu}) = 0.8 \end{array}$
 - No significative excess of events observed
 - > Limits set in the $(m_{\tilde{t}1}, m_{\tilde{v}})$ plane @95% CL

largest scalar top quark mass excluded is 200 GeV for a sneutrino mass of 45 GeV,

Dark matter search with monojet+missing E_T

- CDF Search for WIMP production in collider data using 6.7 fb⁻¹
 - $p\bar{p} \rightarrow \chi\bar{\chi} + [=1]$ jet
 - Jet is O(100 GeV) and assumed to be ISR
- Signal region data consistent with SM
- Convert resulting limits to bounds on DM-nucleon scattering cross section
 - Y. Bai, P. Fox, R. Harnik, JHEP 1012:048 (2010)
- First search of this kind at a collider

IMFP 2012

Summary

Beginning of "final" results from the Tevatron

- □ 80+ new results since the Tevatron shutdown
 - Shown significative results in different physics sectors

World best W mass measurement

- □ Still lead in top mass precision
- □ Confirmation of charm CP violation from LHCb
- Measurement of challenging signatures in the electroweak sector
 - Ultimate validation of Tevatron Higgs boson searches...

BACK-UP

http://www-d0.fnal.gov/Run2Physics/qcd/D0_public_QCD.html

CDF: http://www-cdf.fnal.gov/physics/new/qcd/QCD.html

≻4.1 excess seen in dijet mass spectrum of W+2jet sample

 Binned 2 fit to Mjj distribution consistent with = 3.0±0.7 pb
 Many cross checks performed: various bkg control regions, W+jets modelling etc

DØ repeated CDF analysis (some minor differences)
 No significant discrepancy w.r.t. background model
 Results are 2.5σ apart

QCD: Direct γ in association with heavy quark

Data σ higher than NLO at high are higher with NLO. Possible explanations:

- Missing loop and higher order corrections in the NLO calculations
- Mismodeling of gluon splitting rate to heavy quarks
- Possible contributions from instrinsic heavy quarks
- o Jets: |y|<1.5, E_T>20 GeV

tt Forward Backward asymmetry

 Top pair P_T is a sensitive test of reconstruction and modeling (expecially at low values, due to soft jets)

 Background-subtracted data in good agreement with NLO Powheg and MC@NLO

tt Forward Backward asymmetry

- Use Δy as a proxy for production angle
 - Invariant to boosts along the beamline
 - \circ ${
 m A_{FB}}$ measured in top pair rest frame
 - Inclusive A_{FB} is the same in Δy and $\cos \theta \frac{p(q,g)}{p(q,g)}$

ISR/FSR Interference Negative Contribution to A_{FB}

Flat correction of 26% in Δ y asymmetries for electroweak contributions

 $\bar{p}(\bar{q},g)$

Leading order: no asymmetry

Next-to-leading order:

small positive asymmetry

Some uncertainty regarding theory predictions

 E.g., use LO or NLO crosssection for A_{FB} denominator?

$$A_{FB}^{NLO} = 6.6\%$$

POWHEG: Frixione, Nason, and Ridolphi, JHEP 0709, 126 (2007)

EW Corrections:

Hollik and Pagani, Phys. Rev. D 84, 093003 (2011) Kuhn and Rodrigo, JHEP 1201, 063 (2012) Manohar and Trott, arXiv:1201.3926[hep-ph]

IMFP 2012

Measurement	Parton Level A _{FB} (%)
¹ CDF Lep+Jets, 5.3 fb ^{·1}	15.8 ± 7.4
² CDF Dilepton, 5.1 fb ⁻¹	42 ± 16
³ CDF Combined	20.1 ± 6.7
⁴ D0 Lep+Jets, 5.4 fb ⁻¹	19.6 ± 6.5
Informal Combination*	19.8 ± 4.7
NLO (QCD+EW)	6.6

46

Search for Zy+MET

- Search for SUSY in the Z+γ+MET final state
- Predicted by GMSB SUSY models where the lightest neutralino is NLSP produced in pairs
- They decay to either a Z boson or a photon and to a gravitino that escapes detection.
- parametrized by an effective SUSY breaking scale Λ
- Select a pair of oppositely charged leptons consistent with Z, photon and large MET \Rightarrow Signal region $\mathcal{L} = 6.2 \text{ fb}^{-1}$
- Dominant backgrounds are Zγ which is normalized to data, and Z+jets which is obtained from control regions from data.
- Analysis is further optimized using BDT
- In the absence of an excess limits are set:
 - Model with $\Lambda < 87~\text{TeV}$ is excluded
 - Lightest neutralino with m < 151 GeV is also excluded

with the same sign muons

Universal extra dimensions - all particles can propagate in the extra dimensions

- Minimal UED model - only one extra dimension

Search for the KK pair production in minimal UED 🖁

- Subsequent decays will lead to final states with up to four leptons with low \textbf{p}_{τ}
- Select two same sign muons to suppress backgrounds
- To further gain sensitivity we use BDT

Limits set as a function of R⁻¹, which corresponds to the mass of KK state, and R is radius of compact dimension

R¹ = 260 GeV⁻¹

-0.5

DØ. 7.3 fb⁻¹

BDT output

48

S. Heinemeyer, W. Hollik, D. Stockinger, G. Wiglein, L. Zeune '12