Neutrino physics (theory)

Mariam Tórtola AHEP group. IFIC, Valencia

International Meeting on Fundamental Physics 2012 Benasque, May 29th 2012

Neutrino physics (theory & phenomenology)

Mariam Tórtola AHEP group. IFIC, Valencia

International Meeting on Fundamental Physics 2012 Benasque, May 29th 2012

Outline

1.- What we know from neutrino experiments: * neutrino masses neutrino mixing matrix 2.-Explaining the information we have: * neutrino mass models * the flavor problem * neutrino anomalies: sterile neutrino, NSI 3.- Open questions in neutrino physics.

What we know from neutrino experiments: neutrino masses and mixings

If neutrinos are massive ...

In general, the flavor eigenstates are an admixture of the mass eigenstates:

$$v_{\alpha L} = \sum_{i=1}^{3} U_{\alpha i} v_{iL}$$

If neutrinos are massive ...

In general, the flavor eigenstates are an admixture of the mass eigenstates:

$$v_{\alpha L} = \sum_{i=1}^{3} U_{\alpha i} v_{iL}$$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

If neutrinos are massive ...

In general, the flavor eigenstates are an admixture of the mass eigenstates:

$$v_{\alpha L} = \sum_{i=1}^{3} U_{\alpha i} v_{iL}$$

There are two possible mass orderings:

* Neutrino oscillations are sensitive only to Δm^2_{ij}

- Δm^2_{31} : atmospheric + long-baseline
- Δm^2_{21} : solar + KamLAND

* absolute scale m_v : laboratory measurements + cosmology

• The solar sector: $(\Delta m_{21}^2, \sin^2\theta_{12})$

• The atmospheric sector: (Δm^2_{31} , sin² θ_{23})

• The reactor mixing angle θ_{13}

• The solar sector: $(\Delta m_{21}^2, sin^2 \theta_{12})$

• The atmospheric sector: (Δm^2_{31} , sin² θ_{23})

• The reactor mixing angle θ_{13}

Solar neutrinos

Reaction	source	$Flux (cm^{-2}s^{-1})$
p p \rightarrow d e^+ ν	pp	$5.97(1 \pm 0.006) \times 10^{10}$
p e^ p \rightarrow d ν	pep	$1.41(1 \pm 0.011) \times 10^8$
He p \rightarrow ⁴ He e ⁺ ν	hep	$7.90(1\pm0.15)\times10^{3}$
Be e ⁻ \rightarrow ⁷ Li $\nu \gamma$	⁷ Be	$5.07(1 \pm 0.06) \times 10^9$
$^{8}\mathrm{B} \rightarrow {}^{8}\mathrm{Be^{*}} \mathrm{e^{+}} \nu$	$^{8}\mathrm{B}$	$5.94(1 \pm 0.11) \times 10^{6}$
$^{13}N \rightarrow {}^{13}C e^+ \nu$	^{13}N	$2.88(1 \pm 0.15) \times 10^8$
$^{15}\mathrm{O} \rightarrow {}^{15}\mathrm{N}~\mathrm{e^{+}}~\nu$	$^{15}\mathrm{O}$	$2.15(1 \pm {}^{0.17}_{0.16}) \times 10^8$
${}^{17}\mathrm{F} \rightarrow {}^{17}\mathrm{O} \ \mathrm{e}^+ \ \nu$	17 F	$5.82(1 \pm {}^{0.19}_{0.17}) \times 10^{6}$

v fluxes

SSM predictions

Peña-Garay & Serenelli, arXiv:0811.2424

First solar v detectors: the radiochemical experiments

First solar v detectors: the radiochemical experiments

Chlorine experiment:

- gold mine in Homestake (South Dakota)
- 615 tons of perchloro-ethylene (C₂Cl₄)
- detection process: $V_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^-$
- only 1/3 of SSM prediction detected:

 $\mathsf{R}_{Cl}^{\mathrm{SSM}}$ = 8.12 \pm 1.25 SNU

 R_{Cl} = 2.56 \pm 0.16 (stat.) \pm 0.16 (syst.) SNU

First solar v detectors: the radiochemical experiments

Chlorine experiment:

- gold mine in Homestake (South Dakota)
- 615 tons of perchloro-ethylene (C₂Cl₄)
- detection process: $V_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^-$
- only 1/3 of SSM prediction detected:

 $\mathsf{R}^{\mathrm{SSM}}_{Cl}$ = 8.12 \pm 1.25 SNU

 R_{Cl} = 2.56 \pm 0.16 (stat.) \pm 0.16 (syst.) SNU

Gallium experiments (GALLEX/GNO, SAGE):

 $R_{GALLEX/GNO}$ = 69.3 \pm 4.1 (stat.) \pm 3.6 (syst.) SNU

→ 50% deficit

– sensitive to all neutrino flavors: $v_x e^- \rightarrow v_x e^-$

Super-Kamiokade detector

- sensitive to all neutrino flavors: $v_x e^- \rightarrow v_x e^-$

Detects 40% of neutrinos predicted by the SSM

- sensitive to all neutrino flavors: $v_x e^- \rightarrow v_x e^-$

Detects 40% of neutrinos predicted by the SSM

- sensitive to all neutrino flavors: $v_x e^- \rightarrow v_x e^-$

Detects 40% of neutrinos predicted by the SSM

- sensitive to all neutrino flavors: $v_x e^- \rightarrow v_x e^-$

Detects 40% of neutrinos predicted by the SSM

- sensitive to all neutrino flavors: $v_x e^- \rightarrow v_x e^-$

Detects 40% of neutrinos predicted by the SSM

Borexino: detection of low energy solar neutrinos

300 ton. liquid scintillator
first real-time measurement of 7Be neutrinos (< 5% error)
first real-time measurement of 8B flux below 4 MeV

- consistent with LMA parameters

* reactor experiment: $\bar{\nu}_e + p \rightarrow e^+ + n$

CPT invariance: (Δm²₂₁, θ₁₂)
average distance ~ 180 km

• sensitive to $\Delta m^2{}_{21}\sim 10^{-5}$ eV² ($\Delta m^2{}_{LMA}$)

* reactor experiment: $\bar{\nu}_e + p \rightarrow e^+ + n$

CPT invariance: (Δm²₂₁, θ₁₂)
 average distance ~ 180 km
 sensitive to Δm²₂₁~10⁻⁵ eV² (Δm²_{LMA})

2002: First evidence $\bar{\nu}_e$ disappearance — confirmation of solar LMA ν oscillations KamLAND Coll, PRL 90 (2003) 021802

* reactor experiment: $\bar{\nu}_e + p \rightarrow e^+ + n$

CPT invariance: (Δm²₂₁, θ₁₂)
 average distance ~ 180 km
 sensitive to Δm²₂₁~10⁻⁵ eV² (Δm²_{LMA})

2002: First evidence $\overline{\nu}_e$ disappearance — confirmation of solar LMA ν oscillations KamLAND Coll, PRL 90 (2003) 021802

2004: spectral distortions (L/E) KamLAND Coll, PRL 94 (2005) 081801

* reactor experiment: $\bar{\nu}_e + p \rightarrow e^+ + n$

CPT invariance: (Δm²₂₁, θ₁₂)
 average distance ~ 180 km
 sensitive to Δm²₂₁~10⁻⁵ eV² (Δm²_{LMA})

2002: First evidence *v*_e disappearance
→ confirmation of solar LMA v oscillations KamLAND Coll, PRL 90 (2003) 021802
2004: spectral distortions (L/E) KamLAND Coll, PRL 94 (2005) 081801

Combined analysis solar + KamLAND data

KamLAND confirms LMA

Best fit point: $sin^2\theta_{12} = 0.320^{+0.015}_{-0.017}$ $\Delta m^2_{21} = 7.62 \pm 0.19 \times 10^{-5} \text{ eV}^2$

max. mixing excluded at more than 7σ

Forero, M.T., Valle, arXiv:1205.4018 [hep-ph]

 \Rightarrow Bound on θ_{12} dominated by solar data.

• Bound on Δm_{21}^2 dominated by KamLAND.

• The solar sector: $(\Delta m_{21}^2, \sin^2\theta_{12})$

• The atmospheric sector: $(\Delta m^2_{31}, sin^2\theta_{23})$

• The reactor mixing angle θ_{13}

Super-K Coll, PRL93, 101801 (2004)

Super-K Coll., PRL 8 (1998) 1562.

Long-baseline accelerator experiments

Neutrino beam production:

$$p+X \to \pi^\pm + Y$$

$$\mu^{-} \rightarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu}$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

 $\pi^- \rightarrow \mu^- + \overline{\nu}_{\mu}$

Long-baseline accelerator experimentsNeutrino beam production: $p+X \rightarrow \pi^{\pm} + Y$ $\pi^- \rightarrow \mu^- + \overline{\nu_{\mu}}$ $\mu^- \rightarrow e^- + \overline{\nu_e} + \nu_{\mu}$ $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_{\mu}}$

Goal: test atmospheric oscillations and improve parameter determination. -> the experimental setup must be adjusted to be sensitive to $\Delta m^2 \sim 10^{-3} \text{ eV}^2$.

K2K: KEK \rightarrow Kamioka

$$\left|\Delta m^2\right| = 2.35^{+0.11}_{-0.08} \times 10^{-3} \text{eV}^2$$

 $\sin^2(2\theta) > 0.91 (90\% \text{ C.L.})$

$$\left|\overline{\Delta m^2}\right| = 3.36^{+0.45}_{-0.40} \times 10^{-3} \text{eV}^2$$

 $\sin^2(2\overline{\theta}) = 0.86 \pm 0.11$

$$\begin{vmatrix} \Delta m^2 \end{vmatrix} = 2.35^{+0.11}_{-0.08} \times 10^{-3} \text{ eV}^2 \\ \sin^2(2\theta) > 0.91 (90\% \text{ C.L.}) \end{vmatrix} \qquad \begin{vmatrix} \overline{\Delta m^2} \end{vmatrix} = 3.36^{+0.45}_{-0.40} \times 10^{-3} \text{ eV}^2 \\ \sin^2(2\overline{\theta}) = 0.86 \pm 0.11 \\ 2\sigma \text{ inconsistency} \end{vmatrix}$$

Combined analysis atmospheric + LBL data

Super-Kamiokande (I + II + III) + K2K and MINOS long-baseline data

 Determination of θ₂₃ and Δm²₃₁ is now dominated by LBL data

Forero, M.T., Valle, arXiv:1205.4018 [hep-ph]

Best fit point: $\sin^2\theta_{23} = 0.49^{+0.08}_{-0.05}$ $\Delta m^2_{31} = 2.53^{+0.08}_{-0.10} \times 10^{-3} \text{ eV}^2$

 $\sin^2 \theta_{23} = 0.53^{+0.05}_{-0.07}$ $\Delta m^2_{31} = -(2.40^{+0.10}_{-0.07} \times 10^{-3}) \text{ eV}^2$

Determination of oscillation parameters from global v data

• The solar sector: $(\Delta m_{21}^2, \sin^2\theta_{12})$

• The atmospheric sector: $(\Delta m^2_{31}, sin^2\theta_{23})$

• The reactor mixing angle θ_{13}

Searches for v_e appearance

 $P(v_{\mu} \rightarrow v_{e}) = \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \sin^{2}(\Delta m^{2}_{31} L/4E) + \dots$

Searches for v_e appearance

 $P(v_{\mu} \rightarrow v_{e}) = \sin^{2}2\theta_{13} \sin^{2}\theta_{23} \sin^{2}(\Delta m^{2}_{31} L/4E) + \dots$

MINOS (8.2×10²⁰ p.o.t.)

* 62 electron events observed
* 49.5 ± 7.0 (stat) ± 2.8 (syst) expected
■ 1.7σ excess

[MINOS Collaboration], PRL107, 181802 (2011)

[T2K Collaboration], PRL107, 041801 (2011).

Comparison of MINOS and T2K results

Overlay of the two 90% CL allowed regions ($\delta=0, \theta_{23}=\pi/4$)

Neutrino Mixing Angle - sin² 20₁₃ Inverted Neutrino Mass Hierarchy

The CHOOZ reactor experiment

- * disappearance reactor Ve
- ℁ L = 1 km, E~MeV
- * 2v approx: Δm^2_{31} , θ_{13}

$$P_{ee} = 1 - 2\sin^2 2\theta_{13}\sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

non-observation of Ve disappearance:

R = 1.01 ± 2.8%(stat) ± 2.7%(syst)

The CHOOZ reactor experiment

- * disappearance reactor Ve
- ✤ L = 1 km, E~MeV
- * 2v approx: Δm^2_{31} , θ_{13}

$$P_{ee} = 1 - 2\sin^2 2\theta_{13}\sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

New generation reactor experiments

* more powerful reactors (multi-core)

- * larger detector volume
- ✤ 2-3 detectors at 100 m 1 km.
- sensitivity after 3 years (90% C.L.): sin²θ₁₃~0.0025 0.008

New generation reactor experiments

* more powerful reactors (multi-core)

- * larger detector volume
- ✤ 2-3 detectors at 100 m 1 km.
- * sensitivity after 3 years (90% C.L.): sin²θ₁₃~0.0025 0.008

2 reactor cores + 1 FD (ND 2013) livetime: 101 days

 $sin^{2}(2\theta_{13}) = 0.086 \pm 0.041 \text{ (stat)} \pm 0.030 \text{ (syst)}$

Double CHOOZ Coll, PRL 108 (2012) 131801

 $\theta_{13}=0$ excluded at 2σ

2 reactor cores + 1 FD (ND 2013) livetime: 101 days

 $sin^{2}(2\theta_{13}) = 0.086 \pm 0.041 \text{ (stat)} \pm 0.030 \text{ (syst)}$

Double CHOOZ Coll, PRL 108 (2012) 131801

 $\theta_{13}=0$ excluded at 2σ

08/03/2012

6 reactor cores + 6 neutrino detectors (3ND,3FD) livetime: 55 days

 $Sin^2 2\theta_{13} = 0.092 \pm 0.016(stat) \pm 0.005(syst)$

Daya Bay Coll., PRL 108 (2012) 171803

 $\theta_{13}=0$ excluded at 5.2 σ

2 reactor cores + 1 FD (ND 2013) livetime: 101 days

 $sin^{2}(2\theta_{13}) = 0.086 \pm 0.041 \text{ (stat)} \pm 0.030 \text{ (syst)}$

Double CHOOZ Coll, PRL 108 (2012) 131801

 $\theta_{13}=0$ excluded at 2σ

08/03/2012

6 reactor cores + 6 neutrino detectors (3ND,3FD) livetime: 55 days

 $Sin^2 2\theta_{13} = 0.092 \pm 0.016(stat) \pm 0.005(syst)$

Daya Bay Coll., PRL 108 (2012) 171803

 $\theta_{13}=0$ excluded at 5.2 σ

03/04/2012

RENO Coll., PRL 108 (2012) 191802

6 reactor cores + 2 neutrino detectors (3ND,3FD) livetime: 229 days

 $\sin^2 2\theta_{13} = 0.113 \pm 0.013(stat.) \pm 0.019(syst.)$

 $\theta_{13}=0$ excluded at 4.9 σ

θ_{13} determination from global analysis

$$\sin^2 \theta_{13} = 0.026^{+0.003}_{-0.004}$$

NH

IH

 $\sin^2 \theta_{13} = 0.027^{+0.003}_{-0.004}$

 $\theta_{13} = 0$ excluded at 8σ for both hierarchies

Forero, M.T., Valle, arXiv:1205.4018 [hep-ph]

* Bound on θ_{13} dominated by Daya Bay and RENO * weak sensitivity to CP phase δ

3-flavour oscillation parameters

Forero, M.T., Valle, arXiv:1205.4018 [hep-ph]

Absolute scale of neutrino mass

 $m_{\beta} = \left[c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2\right]^{\frac{1}{2}}$

 m_β < 2.3 (2.1) eV at 95%CL Mainz (Troitsk) Kraus et al, EPJ C40 (2005) 447 Troitsk Collaboration PRD 84 (2011) 112003
 KATRIN sensitivity m_β~0.2 eV

*Neutrinoless double β-decay:

* Tritium β-decay experiments:

 $m_{\beta\beta} = \left| c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3} \right|$

90%CL upper limit from Heidelberg-Moscow < 0.35 eV

Klapdor-Kleingrothaus et al, EPJ A12 (2001) 147.

***** Cosmology:

 $\Sigma m_i = m_1 + m_2 + m_3$

Model	Observables	Σm_{ν} (eV) 95% Bound
$o\omega$ CDM + $\Delta N_{\rm rel} + m_{\nu}$	CMB+HO+SN+BAO	≤ 1.5
$o\omega \text{CDM} + \Delta N_{\text{rel}} + m_{\nu}$	CMB+HO+SN+LSSPS	≤ 0.76
$\Lambda \text{CDM} + m_{\nu}$	CMB+H0+SN+BAO	≤ 0.61
$\Lambda \text{CDM} + m_{\nu}$	CMB+H0+SN+LSSPS	≤ 0.36
$\Lambda \text{CDM} + m_{\nu}$	CMB (+SN)	≤ 1.2
$\Lambda \text{CDM} + m_{\nu}$	CMB+BAO	≤ 0.75
$\Lambda \text{CDM} + m_{\nu}$	CMB+LSSPS	≤ 0.55
$\Lambda \text{CDM} + m_{\nu}$	CMB+H0	≤ 0.45

Constraints on m_{ν} from neutrino oscillations

95% CL regions

Constraints on m_{ν} from neutrino oscillations

95% CL regions

most of the bounds out of reach for

Constraints on m_{ν} from neutrino oscillations

95% CL regions

most of the bounds out of reach for

next generation of 2β0v exp. will test allowed ranges

Trying to explain what we know...

Explaining what we know....

neutrinos are massive: how do they get its mass?

neutrino masses and mixings: why so different from the quark sector?

 neutrino anomalies beyond 3v mixing: are there sterile neutrinos? non-standard neutrino interactions?

Models of neutrino mass

* In the SM neutrinos are massless:

1) the absence of v_R prevents Dirac mass term

2) conservation of L forbids Majorana mass term

Models of neutrino mass

* In the SM neutrinos are massless:

1) the absence of v_R prevents Dirac mass term

2) conservation of L forbids Majorana mass term

dim-5 operator can induce neutrino masses:

$$Y^2 rac{(L^T \tilde{\phi}^*) (\tilde{\phi}^\dagger L)}{\Lambda} \longrightarrow m_v \sim Y^2 rac{v^2}{\Lambda}$$

Weinberg, PRL43 (1979) 1566

Models of neutrino mass

* In the SM neutrinos are massless:

1) the absence of v_R prevents Dirac mass term

2) conservation of L forbids Majorana mass term

dim-5 operator can induce neutrino masses:

$$Y^2 rac{(L^T ilde{\phi}^*) (ilde{\phi}^\dagger L)}{\Lambda} \longrightarrow m_{m{v}} \sim Y^2 rac{v^2}{\Lambda}$$

Weinberg, PRL43 (1979) 1566

For very large Λ , m_v is supressed -> seesaw mechanism

Seesaw mass models

neutrino masses are generated through their mixing with heavy particles

Right-handed singlet: (type-l seesaw)

Scalar triplet: (type-II seesaw)

Fermion triplet: (type-III seesaw)

 $m_{\nu} = Y_N^T \frac{1}{M_N} Y_N v^2 \qquad m_{\nu} = Y_\Delta \frac{\mu_\Delta}{M_\Delta^2} v^2$

Minkowski; Gellman, Ramon, Slansky; Yanagida;Glashow; Mohapatra, Senjanovic

Magg, Wetterich; Lazarides, Shafi; Mohapatra, Senjanovic; Schechter, Valle Foot, Lew, He, Joshi; Ma; Ma, Roy;T.H., Lin, Notari, Papucci, Strumia; Bajc, Nemevsek, Senjanovic; Dorsner, Fileviez-Perez;....

 $m_{\nu} = Y_{\Sigma}^T \frac{1}{M_{\Sigma}} Y_{\Sigma} v^2$

Seesaw mass models

neutrino masses are generated through their mixing with heavy particles

Right-handed singlet:
(type-I seesaw)Scalar triplet:
(type-II seesaw)Fermion triplet:
(type-III seesaw)H
 Y_N^+ H
 M_N H
 M_N H
 M_A H
 M_A H
 M_N H
 M_N H
 M_A H
 M_A H
 M_A V
 M_N H
 M_N H
 M_A H
 M_X V
 M_N H
 M_N H
 M_X H
 M_X V
 M_N H
 M_X H
 M_X H
 M_X V
 M_N H
 M_X H
 M_X H
 M_X V
 M_X H
 M_X H
 M_X H
 M_X H
 M_X H
 M_X H
 M_X

Minkowski; Gellman, Ramon, Slansky; Yanagida;Glashow; Mohapatra, Senjanovic Magg, Wetterich; Lazarides, Shafi; Mohapatra, Senjanovic; Schechter, Valle Foot, Lew, He, Joshi; Ma; Ma, Roy;T.H., Lin, Notari, Papucci, Strumia; Bajc, Nemevsek, Senjanovic; Dorsner, Fileviez-Perez;....

Low-energy seesaw models:

- inverse seesaw
- linear seesaw

Mohapatra and Valle, PRD 34 (1986) 1642

Akhmedov et al, NPB 368 (1996) 270

Radiative models of neutrino masses

* extension of scalar sector of the SM -> generate L violation
 * neutrino masses can be generated through loops
 → loop suppression accounts for the smallness of m_v

Zee model

+ singlet scalar h⁺ + extra Higgs doublet H

Zee-Babu model

+ singlet scalar h⁺
+ singlet scalar k⁺⁺

Zee, NPB 264 (1986) 99; Babu, PLB 203 (1988) 132

Mixing and mass hierarchies: neutrinos vs quarks

mixing matrix:

$$U_{\nu} = \begin{pmatrix} 0.80 - 0.83 & 0.36 - 0.45 & 0.15 - 0.18 \\ 0.46 - 0.54 & 0.47 - 0.59 & 0.63 - 0.75 \\ 0.24 - 0.36 & 0.59 - 0.69 & 0.65 - 0.76 \end{pmatrix}$$

$$U_{\rm CKM} = \left(\begin{array}{ccc} 0.974 & 0.225 & 0.003\\ 0.225 & 0.973 & 0.041\\ 0.008 & 0.040 & 0.999 \end{array}\right)$$
Mixing and mass hierarchies: neutrinos vs quarks

mixing matrix:

$$U_{\nu} = \begin{pmatrix} 0.80 - 0.83 & 0.36 - 0.45 & 0.15 - 0.18 \\ 0.46 - 0.54 & 0.47 - 0.59 & 0.63 - 0.75 \\ 0.24 - 0.36 & 0.59 - 0.69 & 0.65 - 0.76 \end{pmatrix}$$
$$U_{\text{HPS}} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$$

$$U_{\rm CKM} = \begin{pmatrix} 0.974 & 0.225 & 0.003 \\ 0.225 & 0.973 & 0.041 \\ 0.008 & 0.040 & 0.999 \end{pmatrix}$$
$$U_{\rm CKM} = \begin{pmatrix} 1 \varepsilon \varepsilon \\ \varepsilon & 1 \varepsilon \\ \varepsilon & 1 & \varepsilon \\ \varepsilon & 1$$

Mixing and mass hierarchies: <u>ne</u>utrinos vs quarks

mixing matrix:

masses:

The flavour problem

Why do fermion masses show these hierarchical relations?
Why do quarks and leptons mix?

* Why quark and lepton mixing and masses are so different?

The flavour problem

* Why do fermion masses show these hierarchical relations?
* Why do quarks and leptons mix?
* Why quark and lepton mixing and masses are so different?
⇒ adding a flavor symmetry to the SM: SU_c(3) × SU_L(2) × U_Y(1) × G_f

The flavour problem

* Why do fermion masses show these hierarchical relations?

- * Why do quarks and leptons mix?
- * Why quark and lepton mixing and masses are so different?

 \Rightarrow adding a flavor symmetry to the SM: $SU_c(3) \times SU_L(2) \times U_Y(1) \times G_f$

Group	d	Irr. Repr.'s	Presentation
$D_3 \sim S_3$	6	1, 1', 2	$A^3 = B^2 = (AB)^2 = 1$
D_4	8	$1_1, 1_4, 2$	$A^4 = B^2 = (AB)^2 = 1$
D_7	14	1, 1', 2, 2', 2''	$A^7 = B^2 = (AB)^2 = 1$
A_4	12	1, 1', 1'', 3	$A^3 = B^2 = (AB)^3 = 1$
$A_5 \sim PSL_2(5)$	60	1, 3, 3', 4, 5	$A^3 = B^2 = (BA)^5 = 1$
T'	24	1, 1', 1'', 2, 2', 2'', 3	$A^3 = (AB)^3 = R^2 = 1, \ B^2 = R$
S_4	24	1, 1', 2, 3, 3'	$BM: A^4 = B^2 = (AB)^3 = 1$
			$TB: A^3 = B^4 = (BA^2)^2 = 1$
$\Delta(27) \sim Z_3 \ \rtimes \ Z_3$	27	$1_1, 1_9, 3, \overline{3}$	
$PSL_2(7)$	168	$1, 3, \overline{3}, 6, 7, 8$	$A^3 = B^2 = (BA)^7 = (B^{-1}A^{-1}BA)^4 = 1$
$T_7 \sim Z_7 \rtimes Z_3$	21	$1, 1', \overline{1'}, 3, \overline{3}$	$A^7 = B^3 = 1, \ AB = BA^4$

Altarelli & Feruglio, arXiv: 1002.0211

A4 flavor symmetry

One of the most popular choices:

→ smallest group with 3 irrep
→ has three 1-dim irreps 1, 1',
1" and 1 3-dim irrep.

A₄ predicts tribimaximal mixing: $sin^2\theta_{12} = 1/3$ $sin^2\theta_{23} = 1/2$ $sin^2\theta_{13} = 0$ After reactor measurements: TBM predictions need large corrections on θ_{13}

- Perturbations of TBM do not work because all angles get corrections of the same order
 Altarelli and Feruglio, 1002.0211
- modifications of TBM models with extra scalar singlet fields can solve the problem
 Morisi et al, PRD 84 (2011) 053002

Anomalies beyond 3v mixing (I)

LSND

MiniBooNE ⊽

LSND Collab., PRD 64 (2001) 112007

MiniBooNE Collab., PRL 105 (2010) 181801

positive signal for $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance with similar L/E \rightarrow neutrino oscillations with $\Delta m^{2} \sim 0.2$ -10 eV² \rightarrow 4th light sterile neutrino required !!!

Anomalies beyond 3v mixing (II)

reactor anomaly

Mention et al, PRD 83 (2011) 073006

Gallium anomaly

SAGE Coll, PRC 73 (2006) 045805 Giunti and Laveder, PRC 83 (2011) 065504

* averaged deficit of v_{e:}
 R = 0.86 ± 0.06

 \Rightarrow comparable deficits, similar L/E

Gallium + SBL reactor combined fit:

 $\Delta m^2 > 1.5 \text{ eV}^2$, $\sin^2 2\theta = 0.17 \pm 0.04 (1\sigma)$

Abazajian et al, arXiv:1204.5379 [hep-ph]

Cosmological bounds on sterile v

$$\rho_{\rm rad} = \rho_{\gamma} \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\rm eff} \right]$$

 $N_s = \Delta N_{eff} \approx N_{eff} - 3$

Mangano and Serpico, PLB 701 (2011) 296

CMB + LSS:

 $N_{s} = 1.3 \pm 0.9; m_{s} < 0.66 \text{ eV} (95\% \text{ CL})$ Hamann et al, PRL 105(2010) 181301 $N_{s} = 1.61 \pm 0.92; m_{s} < 0.70 \text{ eV} (95\% \text{ CL})$

Giusarma et al, PRD 83 (2011) 115023

CMB + LSS + BBN

 $N_s = 0.85^{+0.39}_{-0.56}$ at 95% CL Hamann et al, JCAP 1109 (2011) 034

Planck sensitivity: $\Delta N_{eff} \approx \pm 0.26$

Status of sterile neutrino hypothesis

Global analysis SBL \overline{v}_e and v_μ disappearance $+ v_\mu \rightarrow v_e$ appearance searches + Gallium data

+ 1 sterile neutrino: (3+1) scheme

Abazajian et al, arXiv:1204.5379 [hep-ph]

only one extra mass scale.
 no CP violation: fails in reconciling neutrino (MiniBooNE) with antineutrino data (LSND + MiniBooNE).

⇒ strongly disfavoured due to incompatibility of LSND and MiniBooNE antineutrino signal with the rest of data.

+ 2 sterile neutrinos: (3+2) scheme

2 new mass scales + CP violation-> reconciles neutrino and antineutrino results.
 in better agreement with data after new reactor fluxes determination.
 strong tension between appearance and disappearance data sets.
 disfavoured by cosmological data.

Alternatives: (3+1+CPT), (3+1+NSI)

Giunti and Laveder, PRD 83 (2011) 053006 Akhmedov and Schwetz, JHEP 1010 (2010) 115

New high precision SBL exp are needed to solve this problem

Non-standard neutrino interactions * NC interactions predicted in extensions of the SM: flavour-changing: $v_{\alpha} f \rightarrow v_{\beta} f$ non-universal: $v_{\alpha} f \rightarrow v_{\alpha} f$ NSI (FCNC) effective 4-fermion operator: $\mathcal{L}_{\rm NSI} = -\varepsilon_{\alpha\beta}^{fP} 2\sqrt{2}G_F(\bar{\nu}_{\alpha}\gamma_{\mu}L\nu_{\beta})(\bar{f}\gamma^{\mu}Pf)$ * the presence of NSI may affect neutrino propagation and detection: Wolfenstein 78, Valle 87, Roulet 91, Guzzo et al, 91 $\mathcal{H}_F = \frac{1}{2E} \left\{ U \begin{pmatrix} 0 & & \\ & \Delta m_{21}^2 & \\ & & \Delta m_{21}^2 \end{pmatrix} U^{\dagger} + a_{\rm CC} \begin{pmatrix} 1 + \epsilon_{ee}^m & \epsilon_{e\mu}^m & \epsilon_{e\tau}^m \\ (\epsilon_{e\mu}^m)^* & \epsilon_{\mu\mu}^m & \epsilon_{\mu\tau}^m \\ (\epsilon_{e\tau}^m)^* & (\epsilon_{\mu\tau}^m)^* & \epsilon_{\mu\tau}^m \end{pmatrix} \right\}$ bounds on NSI come mainly from: - v scattering: LSND, CHARM, reactor exp. Barranco et al., 2005, 2007 - $e^- e^+ \rightarrow v v \gamma at LEP$ Berezhiani & Rossi, 2002 - atmospheric data Fornengo et al., 2002; Friedland et al., 2004, Maltoni 2008

Current bounds on neutrino NSI

NSI on electrons	NSI on d quark	NSI on u quark
$-0.14 < \varepsilon_{ee}^{eL} < 0.06$	$-0.3 < \varepsilon_{ee}^{dL} < 0.3$	$-1 < \varepsilon_{ee}^{uL} < 0.3$
$-0.03 < \varepsilon_{ee}^{eR} < 0.18$	$-0.6 < \varepsilon_{ee}^{dR} < 0.5$	$-0.4 < \varepsilon_{ee}^{uR} < 0.7$
$-0.033 < \varepsilon_{\mu\mu}^{eL} < 0.055$	$ \varepsilon_{\mu\mu}^{dL} < 0.003$	$ \varepsilon_{\mu\mu}^{uL} < 0.003$
$-0.040 < \varepsilon_{\mu\mu}^{eR} < 0.053$	$-0.008 < \varepsilon_{\mu\mu}^{dR} < 0.015$	$-0.008 < \varepsilon_{\mu\mu}^{uR} < 0.003$
$-0.6 < \varepsilon_{ au au}^{eL} < 0.16$	$ arepsilon_{ au au}^{dL} < 1.1$	$ \varepsilon_{\tau\tau}^{uL} < 1.4$
$-0.4 < \varepsilon_{ au au}^{eR} < 0.6$	$ \varepsilon_{\tau\tau}^{dR} < 6$	$ \varepsilon_{\tau\tau}^{uR} < 3$
$ \varepsilon_{\tau\tau}^{eV} < 0.12$	$ \varepsilon_{\tau\tau}^{dV} < 0.038$	$ \varepsilon_{\tau\tau}^{uV} < 0.039$
$ \varepsilon_{e\mu}^{eL} < 0.13$	$ \varepsilon^{dP}_{e\mu} < 7.7 imes 10^{-4}$	$ \varepsilon_{e\mu}^{uP} < 7.7 \times 10^{-4}$
$ \varepsilon_{e\mu}^{eR} < 0.13$. u	
$ \varepsilon_{e\tau}^{eL} < 0.33$	$ \varepsilon_{e\tau}^{dP} < 0.5$	$ \varepsilon_{e\tau}^{uP} < 0.5$
$ \varepsilon_{e\tau}^{eR} < 0.28$	"	"
$ \varepsilon_{\mu\tau}^{eL} < 0.1$	$ \varepsilon_{\mu\tau}^{dP} < 0.05$	$ \varepsilon_{\mu\tau}^{uP} < 0.05$
$ \varepsilon_{\mu\tau}^{eR} < 0.1$	"	<i>"</i>

90% CL

model independent bounds

 \rightarrow ν_{μ} -NSI strongly constrained, weaker bounds in the e-T sector

Davidson et al, 2003 Barranco et al, 2007, González-García and Maltoni, 2008 Bolaños et al, 2009

Current bounds on neutrino NSI

NSI on electrons	NSI on d quark	NSI on u quark
$-0.14 < \varepsilon_{ee}^{eL} < 0.06$	$-0.3 < \varepsilon_{ee}^{dL} < 0.3$	$-1 < \varepsilon_{ee}^{uL} < 0.3$
$-0.03 < \varepsilon_{ee}^{eR} < 0.18$	$-0.6 < \varepsilon_{ee}^{dR} < 0.5$	$-0.4 < \varepsilon_{ee}^{uR} < 0.7$
$-0.033 < \varepsilon_{\mu\mu}^{eL} < 0.055$	$ \varepsilon_{\mu\mu}^{dL} < 0.003$	$ \varepsilon_{\mu\mu}^{uL} < 0.003$
$-0.040 < \varepsilon_{\mu\mu}^{eR} < 0.053$	$-0.008 < \varepsilon_{\mu\mu}^{dR} < 0.015$	$-0.008 < \varepsilon_{\mu\mu}^{uR} < 0.003$
$-0.6 < \varepsilon_{ au au}^{eL} < 0.16$	$ arepsilon_{ au au}^{dL} < 1.1$	$ \varepsilon_{\tau\tau}^{uL} < 1.4$
$-0.4 < \varepsilon_{\tau\tau}^{eR} < 0.6$	$ \varepsilon_{\tau\tau}^{dR} < 6$	$ \varepsilon_{\tau\tau}^{uR} < 3$
$ \varepsilon_{\tau\tau}^{eV} < 0.12$	$ \varepsilon_{\tau\tau}^{dV} < 0.038$	$ \varepsilon_{\tau\tau}^{uV} < 0.039$
$ \varepsilon_{e\mu}^{eL} < 0.13$	$ arepsilon_{e\mu}^{dP} < 7.7 imes 10^{-4}$	$ \varepsilon^{uP}_{e\mu} < 7.7 imes 10^{-4}$
$\left \varepsilon_{e\mu}^{eR}\right < 0.13$		
$ \varepsilon_{e\tau}^{eL} < 0.33$	$ \varepsilon_{e\tau}^{dP} < 0.5$	$ \varepsilon_{e\tau}^{uP} < 0.5$
$\left \varepsilon_{e\tau}^{eR}\right < 0.28$	"	"
$ \varepsilon_{\mu\tau}^{eL} < 0.1$	$ \varepsilon_{\mu\tau}^{dP} < 0.05$	$ \varepsilon^{uP}_{\mu\tau} < 0.05$
$ \varepsilon_{\mu\tau}^{eR} < 0.1$	"	"

90% CL

model independent bounds

 \Rightarrow ν_{μ} -NSI strongly constrained, weaker bounds in the e-T sector

Davidson et al, 2003 Barranco et al, 2007, González-García and Maltoni, 2008 Bolaños et al, 2009

Low energy seesaw schemes:

- sizeable rates for LFV processes

- NSI in v propagation associated to the nonunitarity of mixing matrix. $\eta \sim \epsilon^2/2 \Rightarrow \epsilon < 10^{-2}$

Process	$\mu ightarrow e \gamma$	90% CL
Hierarchy	NH	IH
$ \eta_{12}^{I} <$	$1.4 imes 10^{-3}$	1.4×10^{-3}
$ \eta^I_{13} <$	$2.0 imes10^{-2}$	$2.1(1.6) \times 10^{-2}$
$ \eta^{I}_{23} <$	$2.7(2.1) imes 10^{-2}$	$2.5(1.9) \times 10^{-2}$
$ \eta_{12}^{L} <$	$11.0(9.6)\times 10^{-4}$	$1.5(1.1) \times 10^{-3}$
$ \eta^L_{13} <$	$3.1(2.7) \times 10^{-2}$	$3.3 imes10^{-2}$
$ \eta^{L}_{23} <$	$2.8(2.2) imes 10^{-2}$	$3.0 imes 10^{-2}$

Forero et al, JHEP 1109 (2011) 142

Current bounds on neutrino NSI

NSI on electrons	NSI on d quark	NSI on u quark
$-0.14 < \varepsilon_{ee}^{eL} < 0.06$	$-0.3 < \varepsilon_{ee}^{dL} < 0.3$	$-1 < \varepsilon_{ee}^{uL} < 0.3$
$-0.03 < \varepsilon_{ee}^{eR} < 0.18$	$-0.6 < \varepsilon_{ee}^{dR} < 0.5$	$-0.4 < \varepsilon_{ee}^{uR} < 0.7$
$-0.033 < \varepsilon_{\mu\mu}^{eL} < 0.055$	$ \varepsilon_{\mu\mu}^{dL} < 0.003$	$ \varepsilon_{\mu\mu}^{uL} < 0.003$
$-0.040 < \varepsilon_{\mu\mu}^{eR} < 0.053$	$-0.008 < \varepsilon_{\mu\mu}^{dR} < 0.015$	$-0.008 < \varepsilon_{\mu\mu}^{uR} < 0.003$
$-0.6 < \varepsilon_{ au au}^{eL} < 0.16$	$ arepsilon_{ au au}^{dL} < 1.1$	$ \varepsilon_{\tau\tau}^{uL} < 1.4$
$-0.4 < \varepsilon_{\tau\tau}^{eR} < 0.6$	$ \varepsilon_{\tau\tau}^{dR} < 6$	$ \varepsilon_{\tau\tau}^{uR} < 3$
$ \varepsilon_{\tau\tau}^{eV} < 0.12$	$ \varepsilon_{\tau\tau}^{dV} < 0.038$	$ \varepsilon_{\tau\tau}^{uV} < 0.039$
$ \varepsilon_{e\mu}^{eL} < 0.13$	$ arepsilon_{e\mu}^{dP} < 7.7 imes 10^{-4}$	$ \varepsilon^{uP}_{e\mu} < 7.7 imes 10^{-4}$
$\left \varepsilon_{e\mu}^{eR}\right < 0.13$		
$ \varepsilon_{e\tau}^{eL} < 0.33$	$ \varepsilon_{e\tau}^{dP} < 0.5$	$ \varepsilon_{e\tau}^{uP} < 0.5$
$\left \varepsilon_{e\tau}^{eR}\right < 0.28$	"	"
$ \varepsilon_{\mu\tau}^{eL} < 0.1$	$ \varepsilon_{\mu\tau}^{dP} < 0.05$	$ \varepsilon^{uP}_{\mu\tau} < 0.05$
$ \varepsilon_{\mu\tau}^{eR} < 0.1$	"	"

90% CL

→ model independent bounds

 \rightarrow v_µ-NSI strongly constrained, weaker bounds in the e-T sector

Davidson et al, 2003 Barranco et al, 2007, González-García and Maltoni, 2008 Bolaños et al, 2009

Low energy seesaw schemes:

- sizeable rates for LFV processes

- NSI in v propagation associated to the nonunitarity of mixing matrix. $\eta \sim \epsilon^2/2 \Rightarrow \epsilon < 10^{-2}$

* similar slightly stronger bounds in Antusch et al, NPB 810 (2009) 369.

Process	$\mu ightarrow e \gamma$	90% CL
Hierarchy	NH	IH
$ \eta_{12}^{I} <$	1.4×10^{-3}	1.4×10^{-3}
$ \eta^I_{13} <$	$2.0 imes10^{-2}$	$2.1(1.6)\times 10^{-2}$
$ \eta^{I}_{23} <$	$2.7(2.1) imes 10^{-2}$	$2.5(1.9)\times 10^{-2}$
$ \eta_{12}^{L} <$	$11.0(9.6)\times 10^{-4}$	$1.5(1.1) imes 10^{-3}$
$ \eta_{13}^{L} <$	$3.1(2.7) imes 10^{-2}$	$3.3 imes10^{-2}$
$ \eta^L_{23} <$	$2.8(2.2)\times 10^{-2}$	$3.0 imes10^{-2}$

Forero et al, JHEP 1109 (2011) 142

Open questions in neutrino physics

• θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?

• θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?

0.3

Forero, MT, Valle, 2012

nearly maximal: sin²θ₂₃ = 0.49(0.53) no siginificative preference first octant sin²θ₂₃ ≈ 0.40 max. mixing at 2σ (NH)

0.4 0.5 0.6 0.7

 $\sin^2 \theta_{23}$

Fogli et al, 2012

González-García et al, 2010

first octant sin²θ₂₃ ≈ 0.46 max mixing allowed 90% CL

• θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?

 \Rightarrow combination LBL accelerator + SBL reactor

appearance at LBL:

$$P_{\mu e} = \sin^2 \theta_{23} \sin^2(2\theta_{13}) \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right) + \text{correc}$$

 \Rightarrow anticorrelation $\theta_{23} - \theta_{13}$

Huber et al, JHEP 0911 (2009) 044.

- θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?
 - \Rightarrow combination LBL accelerator + SBL reactor

 \Rightarrow indep. measurement of θ_{13}

Huber et al, JHEP 0911 (2009) 044.

05

GLoBES 2009

0.6

07

• θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?

• neutrino mass hierarchy: NH or IH

- θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?
- neutrino mass hierarchy: NH or IH

 \Rightarrow combined analysis of NOvA and atmospheric neutrinos in INO

Blennow and Schwetz, arXiv:1203.3388[hep-ph]

- θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?
- neutrino mass hierarchy: NH or IH

 \Rightarrow combined analysis of NOvA and atmospheric neutrinos in INO

Blennow and Schwetz, arXiv:1203.3388[hep-ph]

 2σ rejection ~ 2020

- θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?
- neutrino mass hierarchy: NH or IH
 - \Rightarrow reactor experiment with intermediate baseline (~60 km)

 $P^{NH(IH)}\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)\Big|_{\substack{\Delta m_{\odot}^{2}L\\2\pi E_{\nu}}=1} = 1 - 2\,\sin^{2}\theta\,\cos^{2}\theta - \cos^{4}\theta\,\sin^{2}2\theta_{\odot}$ $(+) - \cos^{2}\theta\,\cos^{2}\theta\,\cos^{2}\theta\,\cos^{2}\theta\,\cos^{2}\frac{\Delta m_{31}^{2}}{\Delta m_{\odot}^{2}}$ $(+) - \cos^{2}\theta\,\cos^{2}\theta\,\cos^{2}\theta\,\cos^{2}\frac{\Delta m_{31}^{2}}{\Delta m_{\odot}^{2}}$

Petcov and Piai, PLB 533 (2002) 94 (2002)

- θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?
- neutrino mass hierarchy: NH or IH
 - \Rightarrow reactor experiment with intermediate baseline (~60 km)

- θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?
- neutrino mass hierarchy: NH or IH
 - \Rightarrow reactor experiment with intermediate baseline (~60 km)

 $P^{NH(IH)}\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)\Big|_{\substack{\Delta m_{\odot}^{2}L\\2\pi E_{\nu}}=1} = 1 - 2\,\sin^{2}\theta\,\cos^{2}\theta - \cos^{4}\theta\,\sin^{2}2\theta_{\odot}$ $(+) - \cos^{2}\theta\,\cos^{2}\theta\,\cos^{2}\theta\,\cos^{2}\theta\,\cos^{2}\frac{\Delta m_{31}^{2}}{\Delta m_{\odot}^{2}}$ maximum of Δm_{12} osc

Petcov and Piai, PLB 533 (2002) 94 (2002)

10 kton detector with very good energy resolution -> MH at 90%CL in 5 years.

Zhan et al, PRD 79 (2009) 073007.

• θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?

• neutrino mass hierarchy: NH or IH

• CP violation in the neutrino sector

T2K and NOvA have poor discovery potential for δ_{CP}

- θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?
- neutrino mass hierarchy: NH or IH
- CP violation in the neutrino sector
 - T2K and NOvA have poor discovery potential for δ_{CP}
- \Rightarrow combination with reactors

Huber et al, JHEP 0911 (2009) 044.

- θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?
- neutrino mass hierarchy: NH or IH
- CP violation in the neutrino sector
 - T2K and NOvA have poor discovery potential for δ_{CP}
- \Rightarrow combination with reactors

 \Rightarrow new generation of experiments (superbeam/ β -beam with Mton det) will perform a more solid determination of δ_{CP}

- θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?
- neutrino mass hierarchy: NH or IH
- CP violation in the neutrino sector
- absolute neutrino mass
 - ⇒ slight improvement on Σm_{ν} expected from Planck. (weak lensing of galaxies + Planck ~ 0.05 eV)

Hannestad et al, JCAP 0606 (2006) 025

 \Rightarrow direct mass searches: β , 2β decay.

- θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?
- neutrino mass hierarchy: NH or IH
- CP violation in the neutrino sector
- absolute neutrino mass
- Dirac or Majorana?

 \Rightarrow positive signal in 2 β OV decay experiment

- θ_{23} octant: is $v_{\mu}-v_{\tau}$ mixing maximal?
- neutrino mass hierarchy: NH or IH
- CP violation in the neutrino sector
- absolute neutrino mass
- Dirac or Majorana?
- are there sterile neutrinos, NSI?

⇒ new SBL experiments, cosmological data, MINOS+

MINOS+ searches for new physics

MINOS+: running of MINOS during NovA era

⇒ high statistics neutrino data collected in MINOS FD will test the existence of NSI and sterile neutrinos

MINOS+ sensitivity to θ_{24}

MINOS+ sensitivity to NSI coupling $\epsilon_{\mu\tau}$

MINOS+ proposal, Tzanankos et al, FERMILAB-PROPOSAL-1016.

Summary

- Neutrino oscillations are well stablished with observations in several experiments, with natural and artificial sources.
- Oscillation parameters are measured accurately (\$ 10%) by the combination of different experiments.
- * The mixing angle θ_{13} has been measured at 3 reactor experiments with good level of statistical significance.
- * Theoretical efforts should be made to accommodate the neutrino masses and mixings in a consistent theory.
- There are open issues in neutrino physics, like the existence of sterile neutrinos or non-standard interactions.
- * Questions to be answered by the next generation of neutrino experiments: δ_{CP} , mass hierarchy, new physics...