Ext ra	luo n	and	Quarks

Top FB Asymmetry

Implications in Hadron Colliders

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Color Octects Below 1 TeV

Roberto Barceló

Departamento de Física Teórica y del Cosmos

XL International Meeting on Fundamental Physics (Benasque)

27/05/2012

In collaboration with: A. Carmona, M. Chala, M. Masip and J. Santiago. PRD 84 014024 (2011), PLB 707 88-91 (2012), NPB 857 172-184 (2012).

Extra Gluon and Quarks	Top FB Asymmetry	Implications in Hadron Colliders	Conclusions
0000	0000	0000	
Outline I			

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Extra Gluon and Quarks
 - Randall Sundrum

2 Top FB Asymmetry

- Signal
- The Asymmetry within the SM
- Stealth Gluon

Experimental Implications

4 Conclusions

Extra Gluon and Quarks ●○○○	Top FB Asymmetry 0000	Implications in Hadron Colliders 0000	Conclusions
Extra Gluon and	Quarks		

- Extra Gluon and Quarks
 - Kaluza-Klein excitations of the SM particles.
 - Background model \rightarrow X-dim (Randall-Sundrum).
 - Color octet massive boson $m_G \lesssim 1$ TeV.
 - Small axial couplings to the light quarks $(g_L = -g_R)$.
 - Large axial and vector couplings to the top quark.
 - New quarks opening new decay modes at $m_Q + m_q \sim 600$ GeV.

Randall - Sundrum

- The warped geometry of the 5th dimension is AdS.
- Solves the gauge and fermion mass hierarchy problems.

イロト イポト イヨト イヨト

₹ 9Q@

Randall - Sundrum

- There is a 5-dim field for each chirality.
- Flavor symmetry $\rightarrow c_{u_L,d_L} = c_{c_L,s_L}$ and $c_{u_R,d_R} = c_{c_R,s_R}$.

Extra Gluon and Quarks	Top FB Asymmetry	Implications in Hadron Colliders	Conclusions
0000	0000	0000	
Randall - Sund	rum		

 $c_L < 0.5 \ , \ c_R > -0.5 \longrightarrow \mathsf{IR}$ (TeV) Brane.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三国 - 釣�?

Extra Gluon and Quarks 0000	Top FB Asymme ●○○○	try Implications i 0000	n Hadron Colliders	Conclusions
FB Signal a	t the Tevatron			
CDF Mass	Dependent FB Asyı	mmetry		
$A_{CDF}^{tar{t}}pprox ig \{$	$\left(egin{array}{c} 0.078 \pm 0.054 \\ 0.296 \pm 0.067 \end{array} ight)$	$egin{aligned} M_{tar{t}} &< 450 \ { m GeV}, \ M_{tar{t}} &> 450 \ { m GeV}. \end{aligned}$	$A^{t\bar{t}}_{SM} ightarrow$ Next slie	de .

DØ FB Lepton Asymmetry

$$A_{D\emptyset}^{\prime} pprox \left\{ egin{array}{cc} 0.127 \pm 0.055 & (I^+) \ 0.156 \pm 0.050 & (I^-) \ . \end{array}
ight. A_{SM}^{\prime} pprox 0.035 \pm 0.010 \ . \end{array}
ight.$$

Extra Gluon and Quarks	Top FB Asymmetry	Implications in Hadron Colliders	Conclusions
0000	0000	0000	
The Asymmetry w	vithin the SM		

No asymmetry at tree level within the SM

$$A_{SM}^{t\bar{t}}(\text{NLO QCD}) \approx \begin{cases} 0.047 & M_{t\bar{t}} < 450 \text{ GeV} \,, \\ 0.100 & M_{t\bar{t}} > 450 \text{ GeV} \,. \end{cases}$$

Figure: The interference of these diagrams leads to a positive asymmetry.

- 3σ deviation at $M_{t\bar{t}} > 450$ GeV.
- No anomaly in the cross section, invariant-mass distribution, dijets production, same-sign top pair production and charge asymmetry.
- New particles proposed to explain it are pushed above 1-2 TeV.

Extra Gluon and Quarks	Top FB Asymmetry	Implications in Hadron Colliders	Conclusions
೦೦೦೦	○○●○	0000	
Stealth Gluon			

Stealth Gluon

- Color octet massive boson.
- Small axial couplings to the light quarks $(g_L = -g_R)$.
- Order one axial and vector couplings to the top quark.
- Region overlooked in the past: $m_G \lesssim 1$ TeV.
- Axial couplings contribute maximally to $A_G^{t\bar{t}}(\propto -g_A^q g_A^t)$.
- The left(right)-handed quarks gives an excess(defect) in the parton cross section → cancel each other to leading order (not enough to suppress the peak near the pole).
- New decay channels opening at $\sqrt{\hat{s}} pprox m_Q + m_q \sim 600$ GeV:

$$q \bar{q}
ightarrow G
ightarrow Q \, ar{q} \;, q \, ar{Q}.$$

- At $m_{t \bar{t}} \leq$ 600 GeV ightarrow asymmetry unchanged.
- At $m_{t \, t} >$ 600 GeV ightarrow dilute the peak in $M_{t \, t}$.

- (Left) H_T distribution: scalar sum of the p_T of the jets, the charged lepton and the ∉_T.
- (Right) *T*-quark mass reconstructed.
- *T*-quark pair production negligible in our model.
- $T\bar{t}$ or $B\bar{b}$ events are reconstructed as two particles of the same mass.

Figure: Slightly modified $T\bar{T}$ search at the LHC for 4 fb⁻¹.

- (Left) T-quark mass reconstructed (t quark plus a T quark of arbitrary mass).
- (Right) Gluon mass reconstructed (total invariant mass $m_{T\bar{t}}$ for events with a reconstructed T mass above 350 GeV).
- The extreme T would imply a clear deviation.

Figure: Search at the LHC for 4 fb^{-1} .

$qar{q} ightarrow G ightarrow B ar{b} ightarrow (Zb) ar{b}$ channel

- (Left) Reconstruction of m_{Zb_h}.
- (Right) Gluon mass reconstructed (total invariant mass $m_{Zb\bar{b}}$).
- The SM irreducible background is small.

Figure: Total invariant mass reconstruction for the $Zt\bar{t}$ channel. Search at the LHC for 4 fb⁻¹.

1600 1800 2000 m₇₁ (GeV)

$q\bar{q} \rightarrow G \rightarrow T\bar{t} \rightarrow (Zt)\bar{t} \rightarrow (ZW^+b)W^-\bar{b}$ channel

200 400 600 800 1000 1200 1400

- Harder to reconstruct due to its large multiplicity.
- No expected background events.

Extra Gluon and Quarks	Top FB Asymmetry	Implications in Hadron Colliders	Conclusions
0000	0000	0000	
Conclusions			

Top FB asymmetry

- A light extra gluon with axial couplings to the SM quarks could explain the A^{tt}_{FB}.
- No anomalies in other observables \rightarrow new quarks (stealth).
- The features of the model naturally arises from Randall-Sundrum.
- Current extra quark searches unable to probe the model.
- Changing slightly the cut criteria and the event reconstruction could discriminate it.

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ