CPV Measurements at LHCb

Cédric Potterat Universitat de Barcelona

on behalf of LHCb collaboration

XLth International Meeting on Fundamental Physics

Benasque, May 25 - June 02, 2012

1. LHCb

2. CPV in beauty

- CPV in $B^{\pm} \to DK^{\pm}$
- A_{CP} in $B^0 \to K^* \gamma$
- CPV phase ϕ_s from $B_s^0 \to J/\psi X$
- $\blacktriangleright \text{ CPV in } B \to hh$

3. CPV in charm

- $D^0 \to \pi^+ \pi^-$ and $D^0 \to K^+ K^-$
- Search for CP violation in $D^+ \to K^+ K^- \pi^+$

LHCb experiment

- Designed for CP violation and rare decays of heavy mesons
- Single arm forward spectrometer, bb pair production correlated, 40% in the acceptance.
- Unique kinematic region (among the LHC experiments): high rapidity $(2 < \eta < 5)$ and able to access low p_T
- Excellent momentum resolution and PID
- ► Huge amount of $b\overline{b}$ and $c\overline{c}$ produced in the LHCb Acc: $\sigma(b\overline{b})_{LHCb} = 75.3 \pm 5.4 \pm 13.0 \,\mu\text{b}$ $\sigma(c\overline{c})_{LHCb} = 1742 \pm 267 \,\mu\text{b}$

beautiful CPV

- CPV in $B^{\pm} \to DK^{\pm}$
- ► A_{CP} in $B^0 \to K^* \gamma$
- CPV phase ϕ_s from $B_s^0 \to J/\psi X$
- ▶ CPV in $B \to hh$

• CPV in $B^{\pm} \to DK^{\pm}$: PLB 712 (2012) 203-212

Observation of CPV in $B^{\pm} \to DK^{\pm}$

 $r_D \approx 0.06$

CP modes: $B^- \to DK^-$ and $D \to KK, \pi\pi$ ADS modes: $B^- \to DK^-$ and $D \to K^+\pi^-$ [PRL 78 (1997) 3257] Favoured mode: $B^- \to DK^-$ and $D \to K^-\pi^+$ (favoured)

 1^{st} simultaneous analysis of $B^{\pm} \to D_{CP}h^{\pm}$ and $B^{\pm} \to D_{ADS}h^{\pm} \Leftarrow$ motivated by the future extraction of γ . Gives access to 7 ratios (not discussed here) and 6 A_{CP}

<u>Observation of CPV in $B^{\pm} \to DK^{\pm}$ </u>

- ▶ Key point, the PID: thanks to our RICHs !
- ▶ Cross feed (double misID in ADS mode): Vetoed in a swap mass hypothesis method → cross feed rate: 6×10^{-5}

favoured mode

KK mode

$\pi\pi$ mode

•
$$A(B^- \to [K^+K^-]_D K^-) \& A(B^- \to [\pi^+\pi^-]_D K^-)$$

$$\Rightarrow A_{CP+} = (14.5 \pm 3.2 \pm 1.0)\% : 4.5\sigma$$

ADS mode

First Observation of $B^{\pm} \to [\pi^{\pm}K]_D K^{\pm}$ in the ADS mode (10 σ): $\mathcal{B}(B^{\pm} \to [\pi^{\pm}K]_D K^{\pm}) \approx (2.2 \pm 0.3) \times 10^{-7}$

 $A_{ADS(\pi)} = (14.3 \pm 6.2 \pm 1.1)$ %: 2.4 σ and $A_{ADS(K)} = (-52 \pm 15 \pm 2)$ %: 4.0 σ

 $A_{ADS(K)}\&A_{CP+} \Rightarrow CPV@5.8\sigma$

•
$$A_{CP}$$
 in $B^0 \to K^* \gamma$: LHCb-CONF-2012-004

C.P. | CPV Measurements at LHCb | IMFP-2012

A_{CP} in $B^0 \to K^* \gamma$

- Study the b → sγ transition. NP can arise in new particles contributing to the loop.
- ► Small value predicted by the SM: $A_{CP}^{SM} = -0.0061 \pm 0.0043$
- ▶ Measurement by BaBar [PRL 103, 211802 (2009)]: $A_{CP}^{\text{BaBar}} = -0.0016 \pm 0.0022 \pm 0.007$ Stat. limited.

A_{CP} in $B^0 \to K^* \gamma$: Results

The raw A_{CP} measured in data: $A_{CP} = A_{CP}^{raw} - A_D(K\pi) - \kappa A_P$

- $A_D(K\pi)$ and A_P : Detection and B^0 production asymmetry (from control channels)
- κ : dilution factor due to B^0 oscillation

Measurement done on $\int \mathcal{L} = 1.0 \,\text{fb}^{-1}$ Total yield: $N_{B^0} + N_{\overline{B}0} = 5300 \pm 100$

 $A_{CP} = -0.008 \pm 0.017 (\text{stat.}) \pm 0.009 (\text{syst.})$

Systematic dominated by background model, $b\overline{b}$ production asymmetry in pp collisions and $(K^+\pi^-)/(K^-\pi^+)$ detection asymmetry

▶ CPV phase ϕ_s from $B_s^0 \to J/\psi X$: arXiv:1204.5675, arXiv:1112.3183, LHCb-CONF-2012-002

<u>CPV</u> phase ϕ_s from $B_s \to J/\psi X$

▶ Measure relative phase difference:

 $\phi_s = \phi_M - 2\phi_D$

▶ In SM, normal conventions and ignoring penguins:

 $\phi_D\sim 0$

 $\phi_s^{\rm SM} = \phi_M$

predicated to be small (~ -0.04) and predominantly determined by arg(V_{ts}) $[\phi_s = -2 \arg(V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)]$

- ▶ New Physics can add large phases: $\phi_s = \phi_s^{\text{SM}} + \phi_s^{\text{NP}}$
- ► $B_s \to J/\psi \Phi$ and $B_s \to J/\psi \pi \pi$: very clean decays
- ▶ But requires time-dependent, flavour tagged, angular analysis

 $B_{\circ} \rightarrow J/\psi X$

• differential decay rate for $B_s \rightarrow f_{\text{odd}}$:

- ▶ Signal is sinusoidal time distribution:
 - Amplitude proportional to $\sin(\phi_s)$
 - Opposite sign for B and B \Rightarrow must Tag (using opposite side: $\epsilon_{\rm tag}\sim 33\,\%)$
 - Diluted by wrong tagging probability ($\omega_{\text{tag}} \sim 36.8 \,\%$)
 - Diluted by detector resolution (σ_t)
- What we measure: $\sin(\phi_s) \times D(\sigma_t) \times (1 \omega_{\text{tag}}) \times \sin(\Delta m_s t)$

- LHCb updated ϕ_s measurement with $1.0 \, \text{fb}^{-1}$.
- $m(\pi\pi)$ [775,1550] MeV. The statistics is doubled with respect to the events only in $f_0(980)$ peak region. 7421 ± 105 events.
- ▶ Boosted Decision Tree selection is used.

$B_s \to J/\psi \pi \pi$

- Simultaneously fit tagged and untagged events
- $\Delta \Gamma_s$ and Γ_s constrained to LHCb's measurements in $J/\psi \phi$.
- $\Delta m_s = 17.63 \pm 0.11 \pm 0.02 \,\mathrm{ps}^{-1}$ constrained to LHCb's measurements in $B_s \rightarrow D_s(3)\pi$, [PLB 709 (2012) 177]

$$\phi_s^{J/\psi\pi\pi} = -0.019^{+0.173}_{-0.174} (\text{stat.})^{+0.004}_{-0.003} (\text{syst.}) \text{rad}$$

► Decay to CP-odd and CP-even final states, → need analysis of decay angle distribution

- $\blacktriangleright\,$ but much larger BR: $J/\psi\phi/J/\psi\pi\pi\sim 5$
- ▶ Differential cross section is "very rich":
 - 3 P-wave amplitudes of KK system $(A_{\perp}, A_0 \ , A_{\parallel})$
 - 1 S-wave amplitude (A_S)
 - 10 terms with all interferences $\begin{array}{l} \Gamma_s, \Delta \Gamma_s, \Delta m_s, \phi_s, |A_0|^2, |A_{\perp}|^2, \\ \delta_{\parallel}, \delta_{\perp}, |A_S|^2, \delta_S \end{array}$
- ► ... but fundamentally for ϕ_s we still measure:

 $\sin(\phi_s) \times D(\sigma_t) \times (1 - \omega_{\text{tag}}) \times \sin(\Delta m_s t)$

• and because we separate the terms, we measure the lifetimes of Heavy and Light eigenstates separately: $\Delta\Gamma_s$ and Γ_s

 $B^0_{\rm s} \to J/\psi\phi$

- Simple selection with kinematic cuts
- Most background removed by decay time cut t > 0.3 ps
- Clean signal
- Approx. 21200 signal events

 $\underline{B^0_c} \rightarrow J/\psi\phi$

- Maximum likelihood fit to signal + background time, angle and mass distributions.
- Constrain Δm_s to $17.63 \pm 0.11 \,\mathrm{ps}$

Parameter	Value	Stat.	Syst.
$\Gamma_s [\mathrm{ps}^{-1}]$	0.6580	0.0054	0.0066
$\Delta \Gamma_s [\mathrm{ps}^{-1}]$	0.116	0.018	0.006
$ A_{\perp}(0) ^2$	0.246	0.010	0.013
$ A_0(0) ^2$	0.523	0.007	0.024
F_S	0.022	0.012	0.007
δ_{\perp} [rad]	2.90	0.36	0.07
δ_{\perp} [rad]	[2.81, 3.47]		0.13
δ_s [rad]	2.90	0.36	0.08
$\phi_s[\mathrm{rad}]$	-0.001	0.202	0.027

		1 5	$\Delta 1_s$	$ A_{\perp} $	A0
ϕ_s uncorrelated with other quantities	$\begin{array}{c} \Gamma_s \\ \Delta \Gamma_s \\ A_{\perp}(0) ^2 \\ A_0(0) ^2 \\ \phi_s \end{array}$	1.00	-0.38 1.00	0.39 -0.67 1.00	0.20 0.63 -0.53 1.00

 ϕ_8 -0.01 -0.01 -0.02 1.00

 $\Gamma_s = 0.6580 \pm 0.0054 (\text{stat.}) \pm 0.0066 (\text{syst.}) \,\text{ps}^{-1}$ $\Delta \Gamma_s = 0.116 \pm 0.018 (\text{stat.}) \pm 0.006 (\text{syst.}) \,\text{ps}^{-1}$ $\phi_s = -0.001 \pm 0.101 (\text{stat.}) \pm 0.027 (\text{syst.}) \,\text{rad}$

 $B^0_{\rm s} \to J/\psi\phi$

▶ Used a simultaneous fit to both datasets, taking all common parameters and correlations into account

 $\phi_s: B^0_s \to J/\psi\phi$ and $B^0_s \to J/\psi\pi\pi$

► Used largest syst. error.

 $\phi_s = -0.002 \pm 0.083 (\text{stat.}) \pm 0.027 (\text{syst.}) \,\text{rad}$

▶ CPV in $B \rightarrow hh$: PLB 707 (2012), arXiv:1202.6251, LHCb-CONF-2012-007, LHCb-PAPER-2011-029

CPV in $B \to hh$

Direct CP asymmetry in $B_{d,s} \to K\pi$: LHCb-PAPER-2011-029

- ▶ Interference of tree and loop diagrams.
- ▶ Potentially sensitive to new physics.

Time dependent CP violation in $B \rightarrow hh$: LHCb-CONF-2012-007

- Sensitive to β , β_s and γ .
- First measurement for $B_s^0 \to KK$.

 $B^0_s \to KK$ effective lifetime: LHCb [PLB 707 (2012)] , LHCb-CONF-2012-001

- Sensitive to $\Delta \Gamma_s$ and ϕ_s .
- ▶ Two measurements: 2010 and 2011 datasets.

Direct A_{CP} in $B_{d,s} \to K\pi$

Interference of tree and loop diagrams.

- ▶ Potentially sensitive to new physics.
- A_{CP} in $B_d^0 \to K\pi$ is established.
- Consider B_s^0 system: 14 times lower decay rate, 4 times lower production rate.

Direct A_{CP} defined as: $A_{CP} = \frac{\Gamma(\overline{B}_{(s)} \rightarrow \overline{f}_{(s)}) - \Gamma(B_{(s)} \rightarrow f_{(s)})}{\Gamma(\overline{B}_{(s)} \rightarrow \overline{f}_{(s)}) + \Gamma(B_{(s)} \rightarrow f_{(s)})}$ The raw A_{CP} measured in data: $A_{CP} = A_{CP}^{raw} - A_D(K\pi) - \kappa A_P$

- ► $A_D(K\pi)$: Instrumental asymmetry studied with D^* and D^0 decays.
- $A_P: B^0$ production asymmetry studied with $B^0 \to J/\psi(\mu\mu)K^*(K\pi)$
- κ : dilution factor due to B^0 oscillation

$\underline{B}_{d,s} \to K\pi$: mass distributions

Direct A_{CP} in $B_{d.s} \to K\pi$

Results with $\int \mathcal{L} = 0.35 \,\mathrm{pb}^{-1}$:

$$\begin{split} A_{CP}(B^0_d \to K\pi) &= (-8.8 \pm 1.1 (\text{stat.}) \pm 0.8 (\text{syst.})) \,\% \\ A_{CP}(B^0_s \to K\pi) &= (27 \pm 8 (\text{stat.}) \pm 2 (\text{syst.})) \,\% \end{split}$$

 $A_{CP}(B^0_d \to K\pi)$

- ▶ The most precise measurement available to date
- ▶ good agreement with the current world average from HFAG: $-0.098^{+0.012}_{-0.011}$
- Deviation from 0 exceeds 6 s (sum in quadrature stat + syst)
- ▶ Systematic uncertainty most important contribution from instrumental and production asymmetry

 $A_{CP}(B^0_s \to K\pi)$: 3.3 σ significance !

- First evidence of CP violation in the decays of B_s^0 mesons
- ► In agreement with CDF result: 0.39 ± 0.15 (stat) ± 0.08 (syst) [PRL 106, 181802 (2011)]
- Systematic uncertainty most important contribution from modelling of the signal and background components in the maximum likelihood fit

<u>Time</u> dependent CPV in $B \to hh$

R. Fleischer PLB459 (1999) 306

$$A_{CP}(t) = \frac{\Gamma_{\bar{B} \to f}(t) - \Gamma_{B \to f}(t)}{\Gamma_{\bar{B} \to f}(t) + \Gamma_{B \to f}(t)} = \frac{\mathcal{A}^{dir} \cos(\Delta M t) + \mathcal{A}^{mix} \sin(\Delta M t)}{\cosh(\frac{\Delta \Gamma}{2} t) - \mathcal{A}^{\Delta \Gamma} \sinh(\frac{\Delta \Gamma}{2} t)}$$

with the constraint that: $(\mathcal{A}_{f}^{dir})^{2} + (\mathcal{A}_{f}^{mix})^{2} + (\mathcal{A}_{f}^{\Delta \Gamma})^{2} = 1$

Results form the B-factories

- Not in good agreement
- \rightarrow a third measurement is necessary

Experiment	$A_{\pi\pi}^{\mathrm{dir}}$	$A_{\pi\pi}^{\text{mix}}$	$ \rho(A_{\pi\pi}^{\rm dir}, A_{\pi\pi}^{\rm mix}) $
BABAR	$0.25 \pm 0.08 \pm 0.02$	$-0.68 \pm 0.10 \pm 0.03$	0.06
Belle	$0.55 \pm 0.08 \pm 0.05$	$-0.61 \pm 0.10 \pm 0.04$	0.15
HFAG average	0.38 ± 0.06	-0.65 ± 0.07	0.08

- Integrated luminosity : $0.69 \,\mathrm{fb}^{-1}$
- Events selection: Common kinematic cuts for $B \to K\pi$, $B \to \pi\pi$, $Bs \to KK$, PID cuts to distinguish the different final states
- Decay time resolution: Form $B \to J/\psi X$: 50 fs
- ▶ Decay time acceptance from MC
- ► Flavour tagging: Use Opposite side (OS) tagging Use $B \to K\pi$ to calibrate efficiency and mistag rate

Time dependent $B \to K\pi$ fit (1/2)

- ► Very small contribution from Λ_b negected
- Input form other LHCb measurements

	Input parameters	LHCb results
parameter	value	reference
Δm_s	17.63 ± 0.11 ± 0.02 ps ⁻¹	arXiv:1112.4311
$\Gamma_{\rm s}$	$0.657 \pm 0.009 \pm 0.008 \text{ ps}^{-1}$	arXiv:1112.3183
$\Delta\Gamma_{\rm s}$	$0.123 \pm 0.029 \pm 0.011 \text{ ps}^{-1}$	arXiv:1112.3183

<u>Time dependent</u> $B \to K\pi$ fit (2/2)

- ► 5 tagging categories
- ▶ $\sim 4.5\%$ efficiency
- ► No large difference between Band \overline{B} observed

Production Asymmetry \rightarrow Propagated Gaussian term in $\pi\pi$ and KK

- $A_P(B_d^0) = -0.015 \pm 0.013$
- $A_P(B_s^0) = -0.03 \pm 0.06$

B_d^0 parameters:

- $\Delta m_d = (0.484 \pm 0.019) \, \mathrm{ps}^{-1}$
- $\tau(B_d^0) = (1.509 \pm 0.011) \,\mathrm{ps}$

<u>Time dependent</u> $B^0_d \to \pi \pi$ fit

 $\begin{aligned} \mathcal{A}_{\pi\pi}^{dir} &= 0.11 \pm 0.21 \pm 0.03 \\ \mathcal{A}_{\pi\pi}^{mix} &= -0.56 \pm 0.17 \pm 0.03 \\ \rho(\mathcal{A}_{\pi\pi}^{dr}, \mathcal{A}_{\pi\pi}^{mix}) &= -0.34 \end{aligned}$

 $\tau(B^0_d) = (1.497 \pm 0.025)\, \mathrm{ps}$ in agreement with World Awarage

<u>Time dependent</u> $B^0_s \to KK$ fit

 $\begin{aligned} \mathcal{A}_{KK}^{dir} &= 0.02 \pm 0.18 \pm 0.04 \\ \mathcal{A}_{KK}^{mx} &= 0.17 \pm 0.18 \pm 0.05 \\ \rho(\mathcal{A}_{KK}^{dr}, \mathcal{A}_{KK}^{mix}) &= -0.10 \\ \Delta \Gamma_s &= (0.076 \pm 0.019) \, \mathrm{ps}^{-1} \end{aligned}$

in agreement with LHCb-PAPER-2011-021

Results

- $\blacktriangleright~\mathcal{A}^{dir}$ favours BaBar result
- ► \mathcal{A}^{mix} compatible with world avarage

Assuming U-symmetry and neglecting penguin contributions (small): $\mathcal{A}_{KK}^{dir} \approx \mathcal{A}_{CP}(B^0 \to K\pi) = -0.088 \pm 0.011 \pm 0.008$ [LHCb-PAPER-2011-029]

SM prediction assuming U-symmetry: $\mathcal{A}_{KK}^{mix} \simeq 0.15$

Largest systematic contribution is due to the errors on the input parameters in all results

$B^0_s \to KK$ effective lifetime

The untagged decay time distribution:

$$\begin{split} \Gamma(t) \propto (1 - \mathcal{A}_{\Delta\Gamma_s}) e^{-\Delta_L t} + (1 + \mathcal{A}_{\Delta\Gamma_s}) e^{-\Delta_H t} \\ \mathcal{A}_{\Delta\Gamma_s} &= -2 \operatorname{Re}(\lambda/(1 + |\lambda|^2)) \qquad \lambda = (q/p)(A/A) \end{split}$$
 No CPV $\rightarrow \lambda = 1$

 $B_s^0 \to KK$ effective lifetime:

$$\tau_{KK} = \tau_{B_s^0} \frac{1}{1 - y_s^2} \left[\frac{1 + 2\mathcal{A}_{\Delta\Gamma_s} y_s + y_s^2}{1 + \mathcal{A}_{\Delta\Gamma_s} y_s} \right]$$

 $y_s = \Delta \Gamma_s / 2\Gamma_s$ and $\tau_{B_s^0} = 2/(\Gamma_H + \Gamma_L) = \Gamma_s^{-1}$

Alternative way to extract Γ_s and ϕ_s New Measurements from 2011 data $\int \mathcal{L} = 1.0 \,\text{fb}^{-1}$:

▶ $\tau_{KK} = 1.468 \pm 0.046 (\text{stat.}) \pm 0.006 (\text{syst.}) \text{ ps} [LHCb-CONF-2012-001]$

Constrain of $\Delta \Gamma_s$ and ϕ_s

Fleischer, Knegjens, [arXiv:1109.5115]

Using effective lifetimes to constrain of $\Delta\Gamma s$ and ϕs

charming CPV

- $D^0 \to \pi^+ \pi^-$ and $D^0 \to K^+ K^-$
- Search for CP violation in $D^+ \to K^+ K^- \pi^+$

- ▶ 3 modes of observing CP violation:
 - ▶ in the mixing: rates of $D^0 \to \overline{D}{}^0$ and $\overline{D}{}^0 \to D^0$ differ,
 - ▶ in the decay: amplitudes for a process and its conjugate differ,
 - \blacktriangleright in the interference between mixing and decay diagrams.
- ▶ In the SM, indirect CP violation in charm is expected to be very small and universal between CP eigenstates $O(10^{-4})$
- ▶ Direct CP violation expected small as well
 - ► Negligible in Cabibbo-favoured (CF) modes (SM tree dominates everything)
 - ▶ In singly-Cabibbo-suppressed (SCS) modes: up to $O(10^{-3})$ plausible, and few $\times 10^{-3}$ possible
- ▶ Till some months ago it was usually said that any enhancement bringing CP asymmetries in charm to O(%) would have been a sign of NP...

• $D^0 \to \pi^+\pi^-$ and $D^0 \to K^+K^-$: arXiv:1112.0938

$\underline{D}^0 \to \pi^+\pi^-$ and $D^0 \to K^+K^-$

Time-integrated asymmetries

▶ Looking for the time-dependent CP asymmetry defined as:

$$A_{CP}(f;t) \equiv \frac{\Gamma(D^0(t) \to f) - \Gamma(\overline{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\overline{D}^0(t) \to f)},$$

where $f = K^+ K^-$ or $\pi^+ \pi^-$.

The asymmetry has a time dependence due to mixing. but the time-integrated asymmetry is measured:

$$A_{CP}(f) = a_{CP}^{\text{dir}}(f) + \frac{\langle t \rangle}{\tau} a_{CP}^{\text{ind}}$$

► The flavour of the initial state $(D^0 \text{ or } \overline{D}^0)$ is tagged by requiring a $D^{*+} \rightarrow D^0 \pi_s^+$ decay, with the flavour determined by the charge of the slow pion (π_s^+)

 $\Delta A_{CP} \equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = [a_{CP}^{dir}(K^+K^-) - a_{CP}^{dir}(\pi^+\pi^-)] + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{ind},$

- ▶ $\Delta \langle t \rangle \rightarrow 0$, ΔA_{CP} = difference between the two direct *CP* asymmetry.
- if time-acceptance is \neq for KK and $\pi\pi \rightarrow$ remaining contribution from indirect CPV.
- To 1^{st} order the *raw* asymmetries are:

 $A_{raw}(f) = A_{CP}(f) + A_D(f) + A_D(\pi^+) + A_P(D^{*+}), D = \text{Detection}, P = \text{Production}$

- $A_D(\pi^+)$ and $A_P(D^{*+})$ are independent of $f \to$, cancel in ΔA_{CP}
- $A_D(K^+K^-) = A_D(\pi^+\pi^-)$, final states are self-conjugate

 $\Delta A_{CP} \equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = A_{raw}(K^+K^-) - A_{raw}(\pi^+\pi^-)$

 $\underline{D^0 \to \pi^+\pi^-}$ and $D^0 \to K^+K^-$ signal yields

Total signal yield with $\int \mathcal{L} = 0.62 \,\text{fb}^{-1}$ with 60 % (40 %) Mag $\uparrow(\downarrow)$: - 1.4M $D^0 \to K^+ K^-$ tagged - 0.4 M $D^0 \rightarrow \pi^+\pi^-$ tagged

- ▶ LHCb uses 1D unbinned max. likelihood fits of δm .
- In order to take into account kinematic differences of reconstructed decay (related to KK and $\pi\pi$ masses), fits are performed in kinematic (η, p_T) bins of D^{*+} and π_s^+ . (In total 216 subsamples of data)
- a ΔA_{CP} is determined in each bin.
- Consistency for ΔA_{CP} amongst kinematic bins: $chi^2/ndf = 211/215 (\chi^2 \text{ prob. } 56\%)$

weight average:

 $\Delta A_{\it CP} = [-0.82 \pm 0.21 ({\rm stat.})]\,\%$

systematics		
Fiducial cuts	0.01%	
Peaking background asymmetry cuts	0.04%	
Fit procedure	0.08%	
Multiple candidates	0.06~%	
Kinematic binning	0.02%	
Total Syst.	0.11%	
several of the systematic uncertainties have a statistical component (\searrow with stat.)		

final result:

$$\Delta A_{CP} = [-0.82 \pm 0.21 (\text{stat.}) \pm 0.11 (\text{syst.})]\%$$

 $\Rightarrow 3.5\sigma$ deviation from zero.

HFAG Combination of ΔA_{CP} measurements

Data is consistent with no CPV at $0.006\,\%$ CL,

 $\Delta a_{CP}^{dir} = (-0.656 \pm 0.154)\%,$

 $a_{CP}^{ind} = (-0.025 \pm 0.231)\%.$

► Search for CP violation in $D^+ \to K^+ K^- \pi^+$: PRD 84 (2011) 112008

Search for CP violation in $D^+ \to K^+ K^- \pi^+$

- ▶ Phys. Rev. D 84, 112008 (2011)
- ▶ Model-independent search for direct CPV in three body decays.
- Look for CPV in SCS decay $D^+ \to K^+ K^- \pi^+$.
- ▶ Search for local asymmetries across Dalitz space
- Model-independent method based on binning Dalitz plot and comparing corresponding bins.

Search for CP violation in $D^+ \rightarrow K^+ K^- \pi^+$

- ▶ Bin Dalitz space and compare bins between D^+ and D^- Dalitz space.
- ▶ Based on the Miranda method (PRD 80:096006, 2009)

$$S_{CP} = \frac{N^{i}(D^{+}) - \alpha N^{i}(D^{-})}{\sqrt{N^{i}(D^{+}) - \alpha^{2} N^{i}(D^{-})}}, \qquad \alpha = \frac{N_{\text{tot}}(D^{+})}{N_{\text{tot}}(D^{-})},$$

- α normalise away overall asymmetry, but also mrevoes production and detection effects
- ▶ Plotting S_{CP} for all bins, if NO CPV → Gaussian with $\mu = 0$ and $\sigma = 1$
- ► Calculate $\chi^2 = \sum_i (S_{CP}^i)^2$ and p-values under NO CPV assumption.
- ► Use CF $(D_s^+ \to K^+ K^- \pi^+)$ where NO CPV expected to check for A_{Det}

Search for CP violation in $D^+ \to K^+ K^- \pi^+$

▶ Sevral binning tested

Search for CP violation in $D^+ \to K^+ K^- \pi^+$

▶ All consistent with no CPV. Binning shown agrees with hypothesis of NO CPV (with p-value of 10.6 %)

▶ Carried out on $35 \text{ pb}^{-1} \rightarrow \text{update on full 2011 data set in progress}$

Conclusions

CPV in beauty

- ► CPV in $B^{\pm} \to DK^{\pm}$: Direct CPV @ 5.8 σ , 1st obs. of the ADS mode.
- ► A_{CP} in $B^0 \to K^* \gamma$: In agreement with SM expectation
- ► CPV phase ϕ_s from $B_s^0 \to J/\psi X$: World's most precise measurement of $\phi_s = -0.002 \pm 0.083 \pm 0.027$ rad., first direct obs. for a non-zero $\Delta \Gamma_s$.
- CPV in $B \to hh$: First evidence of CPV in the decays of B_s mesons. First measurement of $B \to KK$. $A_{\pi\pi}^{dir}$ favours BaBar results.

CPV in charm

- ► $D^0 \to \pi^+ \pi^-$ and $D^0 \to K^+ K^-$: First evidence of CPV in the charm sector (3.5 σ).
- ► Search for CP violation in $D^+ \to K^+ K^- \pi^+$: No evidence of CPV.

