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Motivation

◮ Simple QCD matrix elements enter into weak decay rates
(CKM, unitarity).
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◮ For neutral mesons
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B(Bs → µ+µ−) = 3.1(1.4)x10−9 (SM: error dominated by
fBs

)
B(Bs → µ+µ−) < 4.5(3.8)x10−9 LHCb(arXiv:1203.4493)



Motivation

◮ In the heavy quark sector (c and b) there are many gold-plated
states in the spectrum. We can test our calculations.

◮ Precision is crucial for searches of BSM physics. We need
good control over all systematic errors. Best if we have
independent calculations for crosscheck.



Lattice calculation

◮ We introduce a space-time lattice, with length L and lattice
spacing a.

◮ We discretize the (euclidean) action.

◮ High-dimensional integral ⇒ Montecarlo integration.

◮ We eliminate the lattice.
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Fixing the parameters
The free parameters in the lattice formulation are fixed by setting a
set of calculated quantities to their measured physical values.
Quantities that can be accurately calculated from the lattice and
are measured with good precision experimentally.

◮ Scale: lattice spacing a:

◮ Quark masses: mu,d ,ms ,mc , mb.
Could be fixed, for example, by mπ,mK ,mηc

,mηb
.



Some systematic errors

◮ Finite volume: m−1
π

≪ L.
◮ Finite lattice spacing: discretization errors O(ak).

Simulations at different values of a and extrapolation to the
continuum limit a → 0.
Improved actions and operators lead to smaller errors (asqtad,
HISQ, TW, clover, . . . )

◮ Renormalization constants: The lattice is an ultraviolet
regulator. In general, we need to calculate renormalization
constants to relate quantities calculated in the lattice with
quantities calculated in a different scheme.

◮ Matching constants: When using effective field theories, we
need to match such EFT to QCD.

◮ Chiral extrapolation: Usually we are not able to simulate at
physical values of the light quark masses mu,d . We simulate
at a set of ml and extrapolate ml → mu,d .
More important for hadrons with valence light quarks.

◮ Parameter determination: Errors in the determination of the
lattice spacing, quark masses, etc.



Heavy Quarks on the Lattice

◮ The discretization errors grow with the quark mass as powers
of am (tipically (am)2 in most currently used formulations).
For a lattice spacing of a ≈ 0.1 fm, amc ≈ 0.4 and amb ≈ 2.0.

◮ For a direct simulation, we need:

amh ≪ 1 (heavy quarks)
La ≫ m−1

π
(light quarks)

◮ Two scales. Difficult to do directly.
Instead take advantage of the fact that mh is large: ⇒
effective field theory (NRQCD, HQET). Very successful for b
physics.



Relativistic Heavy Quarks

A relativistic formulation has several advantages:

◮ An effective theory needs matching to QCD: hard, source of
systematic error difficult to reduce.

◮ If the action has enough symmetry, some quantities do not
renormalize. For example, for staggered quarks, meson decay
constants do not renormalize because of PCAC.

◮ Using improved actions (HISQ, TMW) and fine enough
lattices, it is possible to get accurate results. This has been
extensively tested for c quarks and works very well. Can
reduce the errors to the few percent level. Worth trying for b.

◮ If we use the same action for heavy-heavy and heavy-light
systems → extensive consistency checks.
Error cancelation in many ratios.
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Non-relativistic results

Two calculations on MILC Nf = 2 + 1 asqtad configurations. Two
lattice spacings, a ∼ 0.12, 0.09 fm.

HPQCD: NRQCD b quarks,
HISQ light valence quarks.

fB = 191(9) MeV. 4.6%
fBs

= 227(10) MeV. 4.4%
fBs
fB

= 1.188(18) 1.5%

FERMILAB/MILC: clover
Wilson/Fermilab b, asqtad light
valence quarks.

fB = 197(9) MeV. 4.6%

fBs
= 242(10) MeV. 4.1%

fBs
fB

= 1.229(26) 2.1%

Some room for improvement (matching, statistics).

Alpha collaboration: On CLS Nf = 2 configurations. Three lattice
spacings, a ∼ 0.075 to ∼ 0.05 fm. HQET for b, NP improved
Wilson for the light valence quarks.

fB = 174(11) MeV 6.3%



Relativistic results I

ETMC: Twisted Wilson quarks. Nf = 2 configurations.

Four values of the lattice spacing, a ∼ .1 fm down to ∼ .054 fm.

Heavy quark: mh ∼ mc , 2.4mc .
Uses also static point to constrain the extrapolation.

fBs
= 232(10) MeV. 4.3%

fBs
fB

= 1.19(5). 4.2%

fB = fBs

(

fB
fBs

)

= 195(12) 6.2%



Relativistic results II

HPQCD: MILC Nf = 2 + 1 asqtad configurations.

5 values of the lattice spacing, from a ∼ 0.15 fm to ∼ 0.045 fm.

HISQ valence quarks: ms , mh ∼ mc ,mb.

fHs
, with Hs varying between Ds and Bs as we change the heavy

quark mass.
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Relativistic results II

HPQCD: MILC Nf = 2 + 1 asqtad configurations.

5 values of the lattice spacing, from a ∼ 0.15 fm to ∼ 0.045 fm.

HISQ valence quarks: ms , mh ∼ mc ,mb.

fHs
, with Hs varying between Ds and Bs as we change the heavy

quark mass.

fBs
= 225(4) MeV. 1.8%

fB = f relatBs
( fB
fBs

)NRQCD = 189(4) MeV 2.1%

fBs
< fDs

:
fBs
fDs

= 0.906(14)

fB could be calculated directly, but much more expensive.



Comparisons

 150  175  200  225  250  275  300

fBx
 / MeV

PDG av BR(B->oi) 
+ PDG av Vub 

HPQCD NRQCD 
1202.4914

HPQCD HISQ 
1110.4510

FNAL/MILC 1112.3051

ETMC 1107.1441

ALPHA 1112.6175

fB
fBs

fB,expt

u, d sea

u, d, s sea

∼ 3σ tension with unitarity in the CKM matrix (arXiv:1204.0791,
arXiv:1104.2117). fB ,Vub? Hint of new physics?



Conclusions and Outlook

◮ The lattice is starting to produce a good enough fB to impact
on phenomenology (unitarity tests). We need to reduce the
errors and have as many independent calculations as possible
for crosscheck.

◮ We need to calculate as many quantities as possible, again for
crosscheck of our lattice methods.

◮ Effective theory methods and relativistic ones can be
complementary, at least for a time.

◮ To increase precision in relativistic calculations we will need to
go to smaller lattice spacings.
In principle straightforward (computing time), but there may
be problems (topology freezing?).

◮ There is still much scope for improvement.
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