Discussion on Higgs Physics

- Which results can be expected until LHC LS1:
 - For ICHEP with 5/fb at 7 TeV + 5/fb of data at 8 TeV, so 10/fb/ experiment at LHC, basically doubling 2011 integrated luminosity
 - Main challenges
 - At the end of the year where 5/fb at 7 TeV + 15/fb of data at 8 TeV doubling the “ICHEP” luminosity

- The two options,
 - “X(125)” is confirmed, then
 - Is the SM Higgs? Confirm and study its properties at LHC, or interpret it properly.
 - Implications for the future of HEP and next generation of colliders
 - “it” is ruled-out
 - Continue to study all possible alternatives for EWSB at LHC
 - Implications for the future of HEP and next generation of colliders
Summary of LHC results

- A robust exclusion interval for the SM Higgs. Essentially only a narrow window below 600 GeV: 122-128 GeV, with an independent exclusion in the region 130-486 GeV at 99% CL.

- Some indication for $m_H \sim 125$ GeV, both experiments observe an excess of 2.5-2.9 σ (local p-value) and measure a production cross section times BR as in the SM.

- The global p-value (LEE effect) if we consider the full search range is not significant from either experiment.

- Both experiments taking data since 2 months at 8 TeV, already more than 3.5/fb delivered to each.
 - 25-30% higher cross-sections
 - In 2012 2-3 times higher PU than in 2011

- Expect to discover the SM Higgs in each experiment by the end of 2012 if it is around 125 GeV, and ready to measure its properties if/when it will be discovered.
Summary of 2011 Higgs Searches (CMS)

95% CL limit on σ/σ_{SM}

CMS Preliminary, $\sqrt{s} = 7$ TeV
Combined, $L_{int} = 4.6$-4.7 fb$^{-1}$

Higgs boson mass (GeV/c2)

114.4
127
3 Remaining corridor of uncertainty

SM HIGGS NOT HERE
Weak Boson Production

Production Cross Section, σ_{tot} [pb]

- W:
 - $\geq 1j$
 - $\geq 2j$
 - $\geq 3j$
 - $\geq 4j$

- Z:
 - $\geq 1j$
 - $\geq 2j$
 - $\geq 3j$
 - $\geq 4j$

- $W\gamma$:
 - $E_T^{\gamma} > 10$ GeV
 - $\Delta R(\gamma, l) > 0.7$

- $Z\gamma$:
 - $E_T^{\gamma} > 10$ GeV
 - $\Delta R(\gamma, l) > 0.7$

- WW

- WZ

- ZZ
 - $H(140) \rightarrow ZZ$

- 36 pb$^{-1}$

- 36 pb$^{-1}$

- 1.1 fb$^{-1}$

- 1.7 fb$^{-1}$

References:

- JHEP10(2011)132
- CMS-PAS-EWK-10-012
- PLB701(2011)535
- CMS-PAS-EWK-11-010
- CMS-PAS-HIG-11-015
Higgs Production at the LHC

Higgs production in proton-proton collisions

\[\sqrt{s} = 7 \text{ TeV} \]

\[\sigma (pp \rightarrow H + X) \text{ [pb]} \]

- \(pp \rightarrow H \) (NNLO + NNLL QCD + NLO EW)
- \(pp \rightarrow t\bar{t}H \) (NNLO QCD + NLO EW)
- \(pp \rightarrow WH \) (NNLO QCD + NLO EW)
- \(pp \rightarrow ZH \) (NNLO QCD + NLO EW)
- \(pp \rightarrow t\bar{t}H \) (NLO QCD)

was area of largest interest
Summary of LHC SM Higgs final states at low mass

- **WW/ZZ modes:**
 - Advantages: large fraction of all effective production at almost all masses
 - Disadvantages: **WW** has poor mass resolution and large backgrounds at low mass. ZZ has low branching fraction.

- **WW** modes:
 - Fully reconstructible, can (eventually) provide angular information; ILLL has very good mass resolution
 - Powerful (and only) modes at high mass

- **Diphoton mode:**
 - A: very good mass resolution, small-ish backgrounds
 - D: small signal

- **Ditau mode:**
 - A: large signal at lowest masses
 - D: poor mass resolution, large backgrounds

- **VH modes:**
 - A: Practical test of bb coupling
 - D: Small signal, large V+jets backgrounds, poor mass resolution
the channels

<table>
<thead>
<tr>
<th>channel</th>
<th>m_H range [GeV]</th>
<th>m_H resolution</th>
<th>sub channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \gamma\gamma$</td>
<td>110 - 150</td>
<td>1-3%</td>
<td>4</td>
</tr>
<tr>
<td>$H \rightarrow \tau\tau$</td>
<td>110 - 145</td>
<td>15%</td>
<td>9</td>
</tr>
<tr>
<td>$H \rightarrow bb$</td>
<td>110 - 135</td>
<td>10%</td>
<td>5</td>
</tr>
<tr>
<td>$H \rightarrow WW \rightarrow l\nu l\nu$</td>
<td>110 - 600</td>
<td>20%</td>
<td>5</td>
</tr>
<tr>
<td>$H \rightarrow ZZ \rightarrow 4l$</td>
<td>110 - 600</td>
<td>1-2%</td>
<td>3</td>
</tr>
<tr>
<td>$H \rightarrow ZZ \rightarrow 2l2\tau$</td>
<td>190 - 600</td>
<td>10-15%</td>
<td>8</td>
</tr>
<tr>
<td>$H \rightarrow ZZ \rightarrow 2l2\nu$</td>
<td>250 - 600</td>
<td>7%</td>
<td>2</td>
</tr>
<tr>
<td>$H \rightarrow ZZ \rightarrow 2l2q$</td>
<td>130 - 165, 200 - 600</td>
<td>3%</td>
<td>6</td>
</tr>
</tbody>
</table>

all of them use 4.6 - 4.8 fb$^{-1}$
look for two opposite-charge leptons

divide the analysis in jet bins (no jets here) \textit{to increase sensitivity}

expect missing energy

and no mass peak

\(H \rightarrow WW \rightarrow l\ell\nu\nu \)

\(e^-_\text{PT} = 63.7 \text{ GeV} \)

\(\mu^+_\text{PT} = 48.8 \text{ GeV} \)

\(\text{MET} = 49.9 \text{ GeV} \)

a Higgs favors small opening angle between the leptons

\textit{not the case for WW}
main backgrounds

• irreducible WW
 • rejected with $\Delta\phi_{ll}$ and m_{ll}
 estimated from high m_{ll} control region

• $W+jets$
 • rejected with tight lepton ID
 fake rate estimated from dijet sample

• top
 • rejected with anti b-tagging
 estimated from b-tagged events

• $Z \to ll$
 • rejected with MET cut and Z veto
 estimated from Z peak
Multivariate (BDT) Classifier
HWW results

Multivariate analysis (BDT) trained at different masses to distinguish from WW

<table>
<thead>
<tr>
<th>mH</th>
<th>DY→ll</th>
<th>ttbar+tW</th>
<th>W+jets</th>
<th>WZ+ZZ+Wγ</th>
<th>WW</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>8.8±9.2</td>
<td>6.7±1.0</td>
<td>14.7±4.7</td>
<td>6.1±1.5</td>
<td>100.3±7.2</td>
</tr>
<tr>
<td>130</td>
<td>13.7±7.8</td>
<td>10.6±1.6</td>
<td>17.6±5.5</td>
<td>7.4±1.6</td>
<td>142.2±10.0</td>
</tr>
<tr>
<td>160</td>
<td>3.4±3.4</td>
<td>10.5±1.4</td>
<td>3.0±1.5</td>
<td>2.2±0.4</td>
<td>82.6±5.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>all BG</th>
<th>H→WW</th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>136.7±12.7</td>
<td>15.7±0.8</td>
<td>136</td>
</tr>
<tr>
<td>130</td>
<td>191.5±14.0</td>
<td>45.2±2.1</td>
<td>193</td>
</tr>
<tr>
<td>160</td>
<td>101.7±6.8</td>
<td>122.9±5.6</td>
<td>111</td>
</tr>
</tbody>
</table>

Expected limit: 127 < M_H < 270 GeV

Observed limit: 129 < M_H < 270 GeV

- WH → WWW recently added (~5x SM)

Multivariate analysis (BDT) trained at different masses to distinguish from WW

Expected 95% CL limit: 129 < M_H < 236 GeV

Observed 95% CL limit: 132 < M_H < 238 GeV

$H \rightarrow \gamma\gamma$

- search for a narrow peak in the di-photon mass distribution
 - good mass resolution (1-2%) over a large smoothly decreasing background

- backgrounds
 - di-photon QCD production
 - photon+jet + fake photon
 - DY with electrons faking photons
 - modeled directly from data using polynomial forms

- multivariate analysis (improves published arXiv:1202.1487)
 - event-by-event mass resolution, photon id discriminant, di-photon kinematic variables and vertex probability combined in a BDT
 - the sensitivity improvement is equivalent to a ~50% luminosity increase
strategy

- start with a separate event class for VBF-tagged events
- remaining events subdivided into 4 event classes according to BDT
results

expected limit from MVA analysis

expected limit from cut-based analysis

excess at 125 GeV
local p-value 2.9σ

global p-value (110-150 GeV window) 1.6σ
• EPS (1.09/fb) LP (1.66/fb)
 Dec 19 (4.76/fb)
• ‘peaks’ come and go
• we are getting into interesting territory, and peaks can also stay
H → ZZ → 4e, 4μ, 2e 2μ : The Golden Channels

- Signal: 4 isolated lepton from common vertex
- Fully reconstructed, Mass resolution ~ 1%
- Reducible backgrounds:
 - ttbar → 2l2v2b ; Z+bb
 - Removed by Isolation & Impact parameter requirements
- Irreducible background: pp → ZZ Continuum
- Event Selection: Same Flavor, opposite charge
 - Z₁: P_T(min) > 10, P_T(max)>20 GeV, 50<M_ll<120
 - Z₂: 12 < M_ll < 120 GeV
 - M_4l > 120 GeV
 - Impact parameter significance > 4
- Reducible background contribution from data
- ZZ Continuum:
 - Shape known at NLO, corrected for gg → ZZ →4l evaluated with MCFM
 - Rate obtained from Z yield in data & theoretical prediction for ratio of ZZ to Z cross sections
H → ZZ → 4l: Expected & Observed Yields

M_{4l} > 100 GeV/c^2
Observed events: 72
Expected events: 67.1 ± 6.0
$H \rightarrow ZZ \rightarrow 4l$: Zoom Of Low Mass Range

$100 < M_{4l} < 160 \text{ GeV/c}^2$

Obs. events: 13
Exp. events: 9.5 ± 1.3

Final state: $4e \quad 4\mu \quad 2e2\mu$

Obs. events: 3 \hspace{0.5cm} 5 \hspace{0.5cm} 5
Exp. events: 1.7 \hspace{0.5cm} 3.3 \hspace{0.5cm} 4.5

Note:
- unbinned events in the bottom panel
- $4e$, 4μ, $2e2\mu$
- Event-by-event mass error (bars)
• The two sets have nearly identical sensitivity
• The $\gamma\gamma+4l$ group shows a localized excess $>2\sigma$ around $m_H=121-125$ GeV
• The $WW+\tau\tau+bb$ group shows a broad excess, reaching 2σ around 115-125 GeV
Expected Sensitivity with 4.7 fb\(^{-1}\)

95% CL expected sensitivity: 117—543 GeV
125 GeV is really a good place to be: \bar{bb}, WW, gg, $\tau\tau$, ZZ, cc are all above a few % and $\gamma\gamma$ is ~maximal.
Summary of the current status of the Higgs boson search in ATLAS - excluded cross sections by individual channels -
Both ATLAS and CMS exclude a SM scalar boson up to ~550 GeV except in range (117-128 GeV): excess 2.5-2.9 σ at 125-126 GeV/c2 (consistent)

ATLAS : $\gamma\gamma$ and ZZ
CMS : $\gamma\gamma$
CDF+ D0 mostly $b\bar{b}$&WW

Too soon to claim even evidence, but…
‘Who would bet against Higgs boson @125 GeV?’

My guess: Look Elsewhere + Look There
\rightarrow CL probably $>~$ local significance of 2d experiment

More data in 2012\rightarrow 5σ and more channels!
Overview of the 125 GeV region

- Tevatron
 - bb: CDF yes, DØ no
 - WW: CDF no, DØ yes
- LHC
 - $gg \rightarrow H \rightarrow \gamma\gamma$: CMS not much, ATLAS YES
 - $VV \rightarrow H \rightarrow \gamma\gamma + 2 \text{ jets}$: CMS yes, ATLAS not much?
 - $ZZ^{(*)}$: ATLAS YES, CMS yes
 - $WW^{(*)}$: ATLAS no, CMS a bit
Significance of the result

- This could go away
 - What looks like a signal for a 125 GeV Higgs boson could be a result of misestimated backgrounds and/or random fluctuations. It is for the moment not as convincing as the evidence for instance with the top quark at 1995.
 - Maybe the SM Higgs boson will be ruled out. If so, we will need to find a non-Standard-Model version. Then it will be significant that Atlas and CMS already can rule out a SM-like Higgs up to 540 to 600 GeV.

- or the Higgs boson could be discovered this year.
 - It looks like the Standard Model Higgs boson, but is it?
 - Is there more than one?
 - Are the couplings to W, Z, t, b, tau right?
 - Is the spin right?
 - Does W-W scattering work as claimed?
 - This involves the Higgs self coupling.

- It is experimentally very difficult.
We should wait until the « 125 GeV effect » is either killed or established.
A particle decaying in two photons is not spin 1 and more probably spin 0

Is it elementary? Does it have all properties of the SM scalar of EBH et al?
It will be exciting to investigate this NEW object!

Just as for EWRCs, its discovery would eliminate a great number of hypotheses.
How shall we study X(125)?

At LHC?
It is there, and will do it.
The question: with which precision? O(10%) or worse (assume 600fb^{-1})
Effect of pile-up?. Etc. etc.
do we need another machine to study more properties or more precisely?
Performance on couplings self couplings and invisible width?

At a linear collider ?
For 125 GeV Higgs, peak cross-section at \(\sim 250 \text{ GeV} = m_H + m_Z + 30 \text{ GeV} \)
But.. 250 GV of acceleration and luminosity at that energy still
requires a large amount of power and superb alignment. *Cost?*

At a small e+ e- machine?
LEP3 in LHC tunnel (see next slides)
Much easier and cheaper than LC but not expandable.

At a muon collider ?
Feasibility study ongoing. Not an easy machine!
Ionization cooling (MICE experiment)
Virtue: s-channel production \(\mu^+ \mu^- \rightarrow H \), exquisite energy calibration
and very small energy spread if needed.
Measurements of Higgs Couplings

- Some decays limited by statistics
- Others limited by systematics

Closed symbols:
- $H \rightarrow \gamma\gamma$
- $H \rightarrow ZZ$
- $H \rightarrow WW$

Open symbols:
- $ttH \rightarrow tt\gamma$
- $ttH \rightarrow ttbb$
- $WH \rightarrow \gamma + X$
- $H \rightarrow WW$

LHC 600 fb$^{-1}$

SLHC 6000 fb$^{-1}$
The Spin of the Higgs Boson @ LHC

Low mass: if $H \rightarrow \gamma \gamma$, it cannot have spin 1.

Higher mass: angular correlations in $H \rightarrow ZZ$ decays.

<table>
<thead>
<tr>
<th>m_H (GeV)</th>
<th>$J^{CP} = 1^+$</th>
<th>$J^{CP} = 1^-$</th>
<th>$J^{CP} = 0^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>6.5 σ</td>
<td>4.8 σ</td>
<td>40 σ</td>
</tr>
<tr>
<td>250</td>
<td>20 σ</td>
<td>19 σ</td>
<td>80 σ</td>
</tr>
<tr>
<td>300</td>
<td>23 σ</td>
<td>22 σ</td>
<td>70 σ</td>
</tr>
</tbody>
</table>

Significance for exclusion of other J^{CP} states than 0^+. ATLAS + CMS, 2 x 300 fb$^{-1}$.
Higgs Self-coupling @ Hi-Lumi LHC?

Measure triple-Higgs-boson coupling with accuracy comparable to 0.5 TeV ILC?

Awaits confirmation by detailed experimental simulation.
Thanks to the sophisticated and thorough use of data-driven techniques, the (un)suitability of theoretical MC generation tools is not standing on the way of the Higgs discovery
• Independently of this, explicit comparisons, checks and validations show that tools appear to be in rather good shape and up to the task of discovery
• Nevertheless, some aspects of the simulation of Higgs production are still poorly tested (e.g. VBF)
• Higgs-search studies are bringing in valuable information for the validation and further improvement of the tools, and further efforts should be made, alongside the discovery race, to fully exploit the potential of these data, to benefit improved tools, and further applications to studies of the Higgs once found, or other BSM searches
Is it *the* Higgs?

- Measure couplings to fermions & gauge bosons
 \[\frac{\Gamma(H \to b\bar{b})}{\Gamma(H \to \tau^+\tau^-)} \approx 3 \frac{m_b^2}{m_\tau^2} \]

- Measure spin/parity
 \[J^{PC} = 0^{++} \]

- Measure self interactions
 \[V = \frac{M_H^2}{2} H^2 + \frac{M_H^2}{2\nu} H^3 + \frac{M_H^2}{8\nu^2} H^4 \]

- Make sure there’s only one Higgs-like particle
Direct Measurements Crucial

• VH, VBF, ttH measure couplings directly
 – WH known at NNLO, ttH & VBF at NLO
 – Reliable theory predictions
 – VH can give Hbb coupling, ttH gives Htt coupling

• Modern studies rely on high p_T region
 – Now have distributions at NLO
 – Theory uncertainties larger at tails of distributions
 – Direct processes implemented in POWHEG, mC@NLO (see Frixione talk)

Time to rethink ttH!
• Very successful restart of LHC at 8 TeV
 – First collisions with stable beams on April 5th
 – Beta* is 0.6m; bunch charges 1.3×10^{11} protons (pileup ~ 27)
 • One fill with 264 bunches of 1.5×10^{11} p (pileup ~30)
 – Increasing number of bunches: 48, 84, 264, 624, … 1380
p-p collision at 8 TeV in CMS
p-p collision at 8 TeV in CMS

- fill 2670 stable beams, with bunch intensity 1.5e11, RECORD peak lumi 6.6e33Hz/cm²
Current Operational Status*

<table>
<thead>
<tr>
<th>Component</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels</td>
<td>97.1%</td>
</tr>
<tr>
<td>Strips</td>
<td>97.75%</td>
</tr>
<tr>
<td>Preshower</td>
<td>97.1%</td>
</tr>
<tr>
<td>ECAL Endcap</td>
<td>99.16%</td>
</tr>
<tr>
<td>ECAL Barrel</td>
<td>98.54%</td>
</tr>
<tr>
<td>HCAL Barrel</td>
<td>99.92%</td>
</tr>
<tr>
<td>HCAL Endcap</td>
<td>99.96%</td>
</tr>
<tr>
<td>HCAL Forward</td>
<td>99.88%</td>
</tr>
<tr>
<td>HCAL Outer</td>
<td>96.88%</td>
</tr>
<tr>
<td>Muon DT</td>
<td>99.1%</td>
</tr>
<tr>
<td>Muon CSC</td>
<td>97.67%</td>
</tr>
<tr>
<td>Muon RPC</td>
<td>98.2%</td>
</tr>
</tbody>
</table>

*As of May 15 2012
LHC Status

- LHC is mostly back on track
 - Record peak luminosity
 - \(L \sim 6.5 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1} \) in one of the most recent fills
- 43% in stable beams last week
 - Despite injector chain, RF problems and tune shifts

- 0.9 delivered last week
- 220 pb\(^{-1}\) in one fill
- 2+ weeks left for data that could be used for ICHEP analyses
 - >5 fb\(^{-1}\) delivered is possible
E = 4TeV
$\beta^* = 0.7m$
148 days of physics

Check if we are on track to produce sufficient integrated luminosity for the Higgs

If needed we can delay the start of LS1 by up to 2 months
Some of our input: search for the Higgs

• Integrated luminosity the key
 – Need >20 fb\(^{-1}\)/expt going into LS1
 – Could use 2 experiments as they are ideally intended, to corroborate conclusively rather than combine.

• Can reach same \(\int L \, dt \) with lower pile-up at 8 TeV
 – Important for low-masses, particularly \(\gamma \gamma \) channel

• Luminosity leveling
 – May be an attractive option provided sufficiently long fills

• Enhanced discovery reach in the full mass range
Higgs to WW Progress

Many Options Are Considered

- This report covers $WW \rightarrow 2 \ell 2\nu$ analysis for Higgs and SMP PAGs
- Physics objection selection:
 - By April 30 we had final list of physics object implementations to be considered for ICHEP. The list of candidates can be seen here: https://twiki.cern.ch/twiki/bin/viewauth/CMS/HiggsWWSummer2012
 - This week we reviewed their performance for HWW analysis and finalized: electrons, muons, jets and b-jets.
 - There is a delay on MET, because results by different groups disagree a lot
 - By May 8th we will finalize all the working points and start synchronization on event by event level
 - Good synchronization between groups is critical for background estimations and comparisons across the groups (currently we are synchronized for 2011 selection)

Use POG recommendations where we don’t see a significant improvement
Expected exclusion sensitivity at 10/fb (7 TeV) with combination of HPA Higgs analysis

Only based on the published 2011 analyses, does not include any of the 2012 improvements
Expected discovery sensitivity at 10/fb (7 TeV) with combination of HPA Higgs analysis

Only based on the published 2011 analyses, does not include any of the 2012 improvements
impressive progress in the SM Higgs search during 2011

- with 5 fb\(^{-1}\) the small window left is \(114.4 \text{ GeV} < m_H < 127.5 \text{ GeV} @ 95\% \text{ CL}\)
- in the low mass region
 - excluded \((m_H > 127.5 \text{ GeV})\) less than expected \((m_H > 114.5 \text{ GeV})\)
 - small and inconclusive excess around 125 GeV

LHC and the detectors are performing in 2012 even better than in 2011, so we are working to produce a major result, by the end of this year, with a good check point at ICHEP