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Stochastic thermodynamics: a brief introduction
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Summary. — The main purpose of statistical mechanics is to give a microscopic
derivation of macroscopic laws, including in particular the celebrated second law of
thermodynamics. In recent years, there have in this respect been spectacular de-
velopments, including the integral and detailed work fluctuation theorems and the
theory of stochastic thermodynamics. We give here a brief introduction to these
developments. In a first step, we derive the first and second law of thermodynamics
for a Markovian stochastic process at the ensemble level, including two major ad-
vances: (1) the theory can be applied to small-scale systems including the effect of
fluctuations, (2) the theory is not restricted to near equilibrium dynamics. As an ap-
plication, we evaluate the efficiency at maximum power of a two-state quantum dot.
We also briefly discuss the connection to information-to-work conversion (Landauer
principle), and the splitting of the second law into an adiabatic and non-adiabatic
component. In a second step we formulate stochastic thermodynamics at the trajec-
tory level, introducing stochastic trajectory dependent quantities such as stochastic
entropy, energy, heat, and work. Both first and second law can be formulated at
this trajectory level. Concerning the second law, the crucial observation is that the
stochastic entropy production can be written as the logarithm of the ratio of path
probabilities. This is turn implies a detailed and integral work and fluctuation the-
orem, linking the probability to observe a given stochastic entropy production, to
that of observing minus this change in a reverse experiment. The usual second law,
stipulating the increase on average of the stochastic entropy production, follows as
a subsidiary consequence.

PACS 05.70.Ln – Nonequilibrium and irreversible thermodynamics.
PACS 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian
motion.
PACS 05.20.-y – Classical statistical mechanics.

1. – Preliminaries

1
.
1. Introduction. – The main purpose of statistical mechanics is to give a microscopic

derivation of macroscopic laws, including in particular the celebrated second law of ther-
modynamics. The apparent contradiction between the irreversible behavior, enshrined in
the second law, and the reversible microscopic equations of motions has been the object
of numerous and sometimes acrimonious debates. In these short notes, we will avoid this
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delicate issue by starting with so-called mesoscopic equations of motion, more precisely
with a Markovian description of the system under consideration. It is well known that
such a description is irreversible from the start. We will however show that one can
surmount several other difficulties that have plagued a statistical mechanical interpreta-
tion of the second law, notably the application to small systems and to systems far from
equilibrium. The basic approach is inspired by the work of Onsager, in the sense that we
will incorporate basic properties imposed by the microscopic laws (reversibility, Lioville’s
theorem, detailed balance) in the irreversible realm, and that of Prigogine since we derive
a thermodynamic formalism valid outside of equilibrium. We shall do this at the level
of a Markovian description with a thermodynamic description including fluctuations and
far from equilibrium states. The most surprising development is the formulation of ther-
modynamics at the level of single trajectories. It sheds a surprising new light on the
traditional version of the second law: the positive average entropy production observed
at the ensemble level is the result of the fact that at the trajectory level, realizations
with positive entropy production are exponentially more likely than the corresponding
realizations with negative entropy production.

1
.
2. Nutshell thermodynamics [1, 2, 3] . – We briefly review some basic elements of

traditional thermodynamics, in order to compare them with the thermodynamic con-
cepts that we will build for Markov processes. The first observation is that macroscopic
systems, when left alone (confined, but otherwise isolated), reach a so-called equilibrium
state, which is characterized by a limited set of macroscopic state (conserved) variables.
The most basic of these variables is the total (or internal) energy E. Other variables are
the volume V and possibly the number of particles N . Second, we note that the energy
of a system can be changed by an external perturbation. We distinguish contributions
identified as work W (which can be controlled at the macroscopical level), from a heat
contribution Q (which correspond to uncontrollable energy exchanges via microscopic
degrees of freedom). We use the convention that work and heat are positive when given
to the system. Conservation of energy (first law) stipulates that:

(1) ∆E = W +Q

or, for small changes

(2) dE = dW + dQ.

Energy is a state variable, but work and heat are not: they depend on the actual way
the perturbation is applied to change the state of the system (1). In particular, Joule’s
famous experiment, establishing the caloric equivalent of heat, corresponds precisely to
the two extreme cases, in which the same transition of a system is achieved (e.g., a
specific amount of water being heated from a lower to a higher temperature), in one case
by only applying work (adiabatic experiment ∆E = W ), and in the other case by pure
heating (∆E = Q).

Having identified the equilibrium state of a system, one can raise the question as to
the physical nature of system under consideration, and in particular about its interaction

(1) To stress this fact, one often uses the special notation d̄ for an infinitesimal change of such
a variable, but we will not do so for simplicity of notation.
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with other systems or with external perturbations. These issues are addressed by the
introduction of a new state function and the formulation of the second law (2). The
first key assertion is the existence, for systems in a state of equilibrium, of another
state variable, called the entropy S. A (macroscopic) system is thermodynamically fully
characterized by the way this entropy depends on its state, via the so-called fundamental
relation: S = S(E, V,N, ...). The partial derivative ∂ES = 1/T can be identified as
the inverse (Kelvin) temperature, which is always positive. Hence one can invert the
fundamental relation to obtain the equivalent relation E = E(S, V,N, ...). Of particular
interest are so-called quasi-static changes, corresponding to the situation in which the
system changes slowly enough so that it is essentially at equilibrium. Since the relation
E = E(S, V,N, ...) is valid all along such a transformation, one finds by differentiation
the so-called Gibbs relation:

(3) dE = TdS − PdV + µdN.

The partial derivates of E with respect to S, V and N are new state variables, namely the
temperature T , minus the pressure −P and the chemical potential µ. Comparing this
expression with the first law, one can identify a work contribution dW = −PdV + µdN
(sum of mechanical and chemical work) and a heat contribution dQ = TdS. Since heat
can be measured as the deficit of energy minus work, the entropy becomes measurable in
a quasi-static experiment (to formally complete the argument, one needs to argue that
temperature can be measured, apart from a multiplicative factor, via the efficiency of heat
engines). The second ingredient is the additivity of entropy: the entropy of a collection
of systems is the sum of separate entropies (3). The final and major ingredient stipulates
what happens when constraints are released and/or systems brought in contact with
each other. While standard thermodynamics does not describe the details of the ensuing
evolution - not surprisingly so since other variables, and possibly a fully microscopic
description, are needed to describe what is happening- it nevertheless gives a general
prescription for the final equilibrium state that is eventually reached. The equilibrium
state is the one with maximum total entropy, compatible with the imposed constraints
(e.g., volume, energy or number of particles). In particular the total entropy change
(including the entropy changes of all systems that participate in the evolution), being
the difference between entropies of final and initial equilibrium states, can never be
negative ∆Stot ≥ 0. This is the celebrated second law of thermodynamics, which has
numerous applications in physics (gases, osmotic pressure, blackbody radiation, phase
transitions), chemistry (chemical equilibrium) and biology (electro-chemical equilibrium,
Nernst relation). It implies that systems that are in thermal contact which each other,
must have the same temperature (justifying the use of thermometers). In the same way,
systems in direct mechanical and chemical contact have the same pressure and same
chemical potential (4).

Of particular interest are idealized systems such as heat baths. A heat bath is a ther-
modynamic system that is described by a single state variable, its energy. It furthermore

(2) In some textbooks, one also introduces the zero’th law, stating that two systems at equilib-
rium with a third one, are also mutually at equilibrium with each other
(3) One needs to be more careful when there is a strong interaction between the systems or
when for example surface effects are studied.
(4) The relation between pressures and chemical potentials can however be more complicated
in the presence of specific constraints such as levers or chemical reactions.
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maintains its equilibrium state (more precisely, its relaxation time scale is fast enough
so that its changes can be considered to be quasi-static), even as it exchanges energy
under the form of heat with its surroundings. We refer to these systems as reservoirs and
denote their properties with subscript r (5). For a heat reservoir, one can thus write:

(4) dSr = dEr/T = dQr/T.

For a heat and particle reservoir, the energy change has a heat and chemical work com-
ponent dEr = TdSr + µdNr = dQr + dWr,chem, and the entropy change is given by:

(5) dSr = dQr/T = (dEr − µdNr)/T.

In the context of stochastic thermodynamics, we will often consider the case of several
baths, which we will then identify with a superscript (ν). Furthermore we will assume
that these reservoirs are infinitely large, so that their temperature T (ν) and chemical
potential µ(ν) remain unchanged, even when finite amounts of heat and particles are
exchanged.

For a system (entropy S) in contact with a single heat bath (entropy Sr, temperature
T , chemical potential µ), the second law can now be written as follows (remember that
Q is the heat to the system, hence Qr = −Q is the heat to the reservoir):

∆Stot = ∆S + ∆Sr ≥ 0(6)

∆S ≥ −∆Sr = Q/T.(7)

The equality sign is reached for a reversible process.
The original derivation of the second law was based on the (reasonable) assumption

that there exists no perpetuum mobile (of the second kind). Alternative formulations
state that heat does not spontaneously flow from a cold to a hot reservoir (Clausius
statement), or that heat from a single reservoir cannot, as sole effect, be transformed
into work (Kelvin statement). On the basis of such an assumption, Carnot was able
to obtain a universal bound for the efficiency of thermal machines, which in turn was
used by Clausius to prove the existence of S as a state function. For further reference,
we show in the reverse how the second law limits the efficiency of a thermal machine.
Consider a cycle in which an auxiliary system (the thermal engine) takes an amount of
heat Qh for a hot reservoir at temperature Th, dropping an amount of heat −Qc in a cold
reservoir at temperature Tc, while returning to its original state at the end of the cycle
(hence its entropy also returns to its original value (6) ). The remainder of the energy is
turned into work W = −Qh −Qc. Positivity of the total entropy produced in the cycle
∆Stot = −Qh/Th −Qc/Tc ≥ 0 implies that the efficiency of the heat to work conversion

(5) Note that, in this special case, the heat is equal to the internal energy (apart from a
constant), hence it is a state variable.
(6) In principle the auxiliary system need not be at equilibrium during this transformation,
hence its classical thermodynamic entropy is then not defined. One can however argue that, in
a steady state operation of a thermal engine, the system returns to its initial state (equilibrium
or nonequilibrium) after each cycle and does therefore not contribute to the overall entropy
production. As we will see, this statement becomes precise in stochastic thermodynamics: the
entropy is a well defined state function, even when the system is out of equilibrium, so its entropy
returns to the same value after each cycle.
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is bounded by the so-called Carnot efficiency: η = −W/Qh ≤ ηc = 1 − Tc/Th. Note
that thermodynamics does not prescribe how the above conversion is achieved. Carnot
provided an explicit construction, but by now numerous alternatives are available. It
is noteworthy that several of the more recent examples are operating with small scale
systems, such that fluctuations or even quantum effects cannot be ignored.

The application of thermodynamics to quasi-static states was extended to spatially
distributed systems invoking the so-called local equilibrium assumption (which is basi-
cally the quasi-static assumption, not only in time, but also in space) by I. Prigogine. It
turns out that both the notation and interpretation of the second law that he formulated
on this occasion will be most useful in stochastic thermodynamics. Prigogine introduced
the concepts of entropy flow and entropy production. Entropy flow is the contribution to
the entropy change due to the (reversible) exchange with the environment. Entropy pro-
duction is an additional entropy increase due to irreversible processes inside the system.
In the above example, we identify the entropy flow to the system as minus the entropy
change of the reservoir: ∆eS = −∆Sr (7). Furthermore, since the reservoir is assumed
to operate quasi-statically, it does not have an internal entropy production. The only
irreversible process is taking place in the system and we call it the entropy production
∆iS = ∆Stot. We can thus rewrite the second law for a non-isolated system, exchanging
a reversible entropy flow with its environment, as follows (8):

∆S = ∆iS + ∆eS with ∆iS ≥ 0(8)

dS = diS + deS with diS ≥ 0(9)

Ṡ = Ṡi + Ṡe with Ṡi ≥ 0.(10)

The first line corresponds to the entropy increase upon changing from an initial equilib-
rium state to a final equilibrium change. Note that the differential and derivative version
assume quasi-static changes (or more generally local equilibrium), otherwise the ”usual”
thermodynamic entropy is not well defined.

We finally present yet another formulation of the second law, which is especially
useful if we are interested in the amount of work spent during the transition between
two equilibrium states for a system in contact with a heat bath. We introduce the
state function the free energy F = E − TS. For changes in contact with a single heat
bath, initial and final temperatures of the system are equal to that of the bath, hence
∆F = ∆E − T∆S. We find upon combining the second law ∆iS = ∆S −∆eS ≥ 0 with
the first law ( ∆E = Q+W = T∆eS +W ) that:

T∆iS = W −∆F ≥ 0.(11)

In words, the amount of work needed for the transition (of the system in contact with a
heat bath) is at least equal to the change in system free energy. The equality is reached
for a reversible process. If the change of free energy is negative ∆F ≤ 0, the work can be

(7) We mention a possible source of confusion: the reservoir entropy is a state function, while
we stressed that the entropy exchange is not. This apparent contradiction stems from the fact
that when we refer to state variables, we have in mind the state of the system and not the state
of the reservoir.
(8) Note that Prigogine also writes, for obvious aesthetic reasons, the first law under a similar
form, namely dE = diE + deE with diE = 0.
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negative, i.e. one can derive an amount of work, namely at most −∆F , from the change
in the state of the system (which then operates as fuel).

1
.
3. Nutshell equilibrium statistical mechanics [4] . – We briefly review some concepts

from equilibrium statistical mechanics, which will help us with the proper formulation
of stochastic thermodynamics. The system is now described in a fully microscopic way.
To make the connection with a Master equation description, it is convenient to take a
(semi-classical) quantum view: a micro-state of the system is an energy eigenstate, fully
identified by the (set of) parameter(s) m (for example a complete set of quantum num-
bers). Each micro-state has a specific energy εm and number of particles nm. One of
the basic features of equilibrium statistical physics is the description in terms of ensem-
bles, introduced by Gibbs.(9) The equilibrium state of the system is characterized by
a probability distribution pm over these states (10). The specific form of this distribu-
tion depends on the situation. For an isolated system, one utilizes the micro-canonical
ensemble, with the system’s energy lying in a small interval I = [E0, E0 + δE0] (with
δE0 <<< E0, but still large enough to contain many energy levels). All energy states
inside this shell are equally probable. One thus has

pm = peqm = 1/Ω for εm ∈ I(12)

with Ω the number of energy states in the shell I. When the system is in contact with a
heat bath (temperature T, kBT = β−1 and kB is Boltzmann’s constant) and a heat or
particle reservoir (temperature T , chemical potential µ), the distributions are canonical
and grand-canonical:

pm = peqm = e−β(εm−F )(13)

pm = peqm = e−β(εm−µnm−G)(14)

where F and G are the Helmholtz free energy and the grand potential, respectively (11).
Their explicit expression follows from normalization:

e−βF =
∑
m

e−βεm(15)

e−βG =
∑
m

e−β(εm−µnm)(16)

We first turn our attention to the energy of the system, being the following ensemble

(9) We mention in passing the connection with the ergodic theorem, which shows the equivalence
between the ensemble average considered here and the long-time average of a single trajectory.
We also mention that for large systems, fluctuations of macroscopic quantities are exceedingly
small, so that the ensemble average coincides with the most probable or typical value.
(10) In the full quantum version, we have to use the density matrix ρ, but off-diagonal elements
are anyways zero for equilibrium states in the energy representation.
(11) For ideal systems, with the total energy being the sum of single particle energies, the grand
potential provides a simple starting point to obtain the famous Fermi-Dirac and Bose-Einstein
statistics for the occupation densities of the single particle states.
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average:

(17) E =
∑
m

εmpm.

This energy will be modified when the distribution changes and/or when the energy levels
move. For small changes one can write:

(18) dE =
∑
m

(dεmpm + εmdpm) = dW + dQ (+dWchem).

We clearly recognize the first law of thermodynamics, with the following interpretation:
heat corresponds to instantaneous jumps (transitions) between states of different energy,
resulting in a change in occupation probability. In case the number of particles also
changes, one has to substract the chemical energy part to obtain the heat contribution.
Work (aside from the chemical work) corresponds to moving an occupied energy level.
This can for example be achieved by applying an external field of changing the volume.

We next turn to the definition of entropy. We will use the Shannon expression [6],
since it gives rise to a consistent and elegant formulation in stochastic thermodynamics:

(19) S = −kB
∑
m

pm ln pm.

The above definition of the entropy is, at equilibrium, in agreement with the usual
thermodynamic entropy. This can be checked for the three ensembles mentioned above.
In particular, it yields the usual thermodynamic relations for Helmholtz free energy
F = E − TS and the grand potential G = E − TS − µN , where:

(20) N =
∑
m

nmpm.

Furthermore, the interpretation is compatible with thermodynamics for a quasi-static
change. For example, one finds for a quasi-static change (around a reference equilibrium
state peq, pm = peqm + dpm) of a system in contact with a single thermal reservoir:

(21) dS = −kB
∑
m

dpm ln peqm = βkB
∑
m

εmdpm =
dQ

T
,

in agreement with the usual thermodynamic formula.
Finally, we mention difficulty with the above expression as being a thermodynamic

entropy for an isolated system, which highlights the issue of reversibility versus irre-
versibility. This argument applies to both classical and quantum description. Liouville’s
theorem stipulates that ρ, the density in phase space (classical systems) or the den-
sity matrix (quantum mechanics), is constant along the trajectory (i.e., the full time
derivative of ρ is zero). In quantum mechanics, it is a result of the unitarity of the
time-evolution operator. Classically, it follows from the Hamiltonian structure of the
equations of motion. We start with the evolution equation for the probability density
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ρ (this is a conservation equation for the probability or a non-dissipative Fokker Planck
equation):

∂ρ

∂t
= −

∑
j

{ ∂
∂qj

q̇j +
∂

∂pj
ṗj}ρ.(22)

In combination with:

q̇j =
∂H

∂pj
(23)

ṗj = −∂H
∂qj

,(24)

we find for the full derivative:

dρ

dt
=

∑
j

{ ∂ρ
∂qj

q̇j +
∂ρ

∂pj
ṗj}+

∂ρ

∂t
= 0.(25)

It easily follows that the following Shannon entropy:

(26) S = −kBTrρ ln ρ

is conserved in time, and does, at first sight, not present a good candidate for the total
entropy. We will not discuss this issue further, nor the proposed arguments of reso-
lution (statistical interpretation, coarse graining, projection, chaos, quantum collapse,
expansion of universe, nonequilibrium initial condition, canonical typicality).

In the stochastic approach presented below, irreversibility is build in from the start.
Furthermore, we do not consider isolated systems, and the relaxation is due to the cou-
pling to reservoirs. The conservation of phase volume has however another fundamental
microscopic consequence, which we will need to incorporate in our mesoscopic theory,
namely the condition of detailed balance. This property states that it is equally proba-
ble, in a system at equilibrium, to observe any kind of transition, as it is to observe its
time-reverse. In other words, there is no arrow of time: one cannot distinguish in a movie
of a system at equilibrium, whether it is played forward or backward. The proof is most
easily given in the microcanonical ensemble. Consider the probability for a transition
from a subspace of phase space to another subspace, during a certain time (of measure
nonzero). For simplicity we consider that both subspaces are even in the momenta. We
note that there is a one-to-one correspondence between every trajectory that makes the
transition, and the time-reverse trajectory with reversed momenta. Because of Liouville’s
theorem, both sets, the one generating the forward and that producing the time-reversed
transition, have equal phase volume, and are thus equally probable in a micro-canonical
distribution. The property of detailed balance can be infered from a handwaving yet
probably deeper argument using the Kelvin statement of the second law. Indeed, if such
a ”time-asymmetric” transition would exist in a system at equilibrium, one could extract
work from it by building a work-generating device (kind of ”waterwheel”) driven by these
transitions.
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1
.
4. Nutshell Master equation [5] . – The state of the system is represented by the

index m. We assume Markovian dynamics with transition rates Wm,m′ ≥ 0, defined as
the probability per unit time to make a transition from state m′ to m (m′ 6= m) (12).
The essence of Markovian dynamics is the assumption that this transition probability,
e.g. for a transition from m′ to m, does not depend on how the former state m′ was
reached. As a result, the probability distribution pm(t) to be in state m at time t obeys
a Master equation, which we write in a number of different forms:

ṗm =
∑
m′

[Wm,m′pm′ −Wm′,mpm](27)

=
∑
m′

Jm,m′ with Jm,m′ = Wm,m′pm′ −Wm′,mpm(28)

=
∑
m′

Wm,m′pm′(29)

In the last line, we introduced, to compactify notation, the ”diagonal” element:

(30) Wm,m = −
∑

m′,m′ 6=m

Wm′,m.

Note that as a result, the matrix W with elements Wm,m′ is a ”stochastic” matrix (13),
the sum of elements in a column adding up to zero:

(31)
∑
m

Wm,m′ = 0.

This property guarantees the conservation of probability. Formulated in an alternative
way, we note that the matrix W has a left eigenvector (1, 1, , ..., 1) with eigenvalue zero.
We call the corresponding right eigenvector the ”stationary distribution” pstm:

(32) ṗstm =
∑
m′

Wm,m′p
st
m′ = 0.

We will assume for simplicity that this distribution is unique (14).

In the sequel, we will consider the possibility of a time-dependent transition matrix
W = W(t). The corresponding distribution is then obviously also time-dependent pstm =
pstm(t). This distribution still satisfies (32), but only at a single instance of time t,
when W = W(t). pst is therefore only a genuine stationary distribution when the rate
matrix is time-independent. In this case, we can in fact construct a Lyapounov function,
showing that any initial distribution relaxes to this stationary distribution. The proof

(12) Take care not to confuse the transition rates Wm,m′ or the transition matrix W with the
work W .
(13) ”Stochastic” is the name usually reserved for the transition matrix of a discrete time Markov
chains, with the elements of each column summing up to 1.
(14) Otherwise the state space consists of separate regions.
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goes as follows. We introduce the following H-function (terminology borrowed from the
H-function introduced by Boltzmann):

(33) H = D(pm||pstm) =
∑
m

pm ln
pm
pstm
≥ 0.

This quantity is positive and only zero when pm = pstm ∀m. This quantity also appears
in information theory, where it is called the Kullback-Leibler distance or relative entropy
between the distributions pm and pstm [6]. Its positivity can easily be shown on the basis
of the inequality

lnx ≤ x− 1 or − lnx ≥ 1− x ∀x ≥ 0.(34)

Furthermore, one shows using the same inequality that (assuming that pstm is time-
independent!):

dH

dt
=

∑
m

dpm
dt

ln
pm
pstm

(35)

=
∑
m,m′

Wm,m′pm′ ln
pm
pstm

(36)

=
∑
m,m′

Wm,m′pm′ ln
pm pstm′

pstm pm′
(37)

=
∑

m,m′;m 6=m′
Wm,m′pm′ ln

pm pstm′

pstm pm′
(38)

≤
∑

m,m′;m 6=m′
Wm,m′pm′(

pm pstm′

pstm pm′
− 1)(39)

=
∑
m,m′

Wm,m′pm′(
pm pstm′

pstm pm′
− 1) = 0.(40)

The H function has properties reminiscent of minus the entropy: it is positive and de-
creases in time until a minimum is reached at the steady state. There is however, at
this stage, no input whatsoever from physics. We will in fact show below that minus
the time derivative of the H function corresponds, in an appropriate physical setting, to
a contribution to the entropy production (which we will call the non-adiabatic entropy
production), namely the one related to the relaxation to the steady state. Hence the
H-theorem is not related to the second law proper, but rather to a minimum entropy
production theorem.

2. – Ensemble stochastic thermodynamics.

2
.
1. Ensemble stochastic thermodynamics: first law . – We now embark on a proper

formulation of the first law of thermodynamics for a system obeying a Markovian master
equation, proceeding in close analogy with statistical mechanics. We associate to every
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state m of the system an energy εm, and possibly a number of particles nm. The average
energy and number of particles are given by:

E =
∑
m

εmpm

N =
∑
m

nmpm

Note that both εm and pm can be time-dependent (while nm is time-independent). When
the energy levels are shifted, we are performing work on the system via an external agent
(which we suppose to be a purely non-dissipative work source, which we need not describe
any further). The energy needed to change the probability distribution over the energy
levels, i.e. jumps between different states, is coming from heat exchange with reservoirs
(plus possibly a chemical work contribution if the number of particles also changes).
Hence as in the statistical mechanical description, we can write for the energy flux into
the system:

Ė = Ẇ + Q̇ (+Ẇchem)

with the work and heat (plus chemical work) flux:

Ẇ =
∑
m

ε̇mpm

Q̇ (+Ẇchem) =
∑
m

εmṗm.

Note that we give here the rate of change of the energy because we know the time
derivative ṗm (it is given by the Master equation) and ε̇m. Usually, the time-dependence
of the energy level is attributed to an external agent acting on a control variable λ = λ(t),
with εm = εm(λ) (see also discussion further below), hence: ε̇m = ∂ε/∂λ λ̇. Using the
Master equation, the heat and particle rates are given more explicitly by:

Q̇ (+Ẇchem) =
∑
m

εmṗm =
∑
m,m′

εmJm,m′ =
1

2

∑
m,m′

εm,m′Jm,m′(41)

Ṅ =
∑
m

nmṗm =
∑
m,m′

nmJm,m′ =
1

2

∑
m,m′

nm,m′Jm,m′(42)

where the net average rate of transitions or flux from m′ to m (also mentioned above) is
given by (note that Jm,m′ = −Jm′,m):

Jm,m′ = Wm,m′pm′ −Wm′,mpm.(43)

For compactness of notation, we also introduced the energy and number of particles
flowing into the system upon making the transition from m′ to m:

εm,m′ = εm − εm′(44)

nm,m′ = nm − nm′ .(45)
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To make the connection with a physical system and to identify amongst other things
the chemical work, we need to say more about the transition rates. We will consider the
simple situation of a system in contact with a number of heat/particle baths denoted by
the superscript (ν). We will assume that each reservoir gives an additive contribution to
the transition rate:

(46) W =
∑
ν

W(ν).

For this reason, we can also separate the fluxes Jm,m′ , and hence also heat and particle

rates (into the system) Q̇ and Ṅ , respectively, into separate contributions coming from
exchanges with each of the reservoirs ν:

Jm,m′ =
∑
ν

J
(ν)
m,m′(47)

J
(ν)
m,m′ = W

(ν)
m,m′pm′ −W

(ν)
m′,mpm(48)

and (with the obvious convention that the flux J (ν) has to be used for the quantities
with superscript (ν)):

Q̇ =
∑
ν

Q̇(ν)(49)

Ṅ =
∑
ν

Ṅ (ν)(50)

Ẇchem =
∑
ν

Ẇ
(ν)
chem.(51)

We now introduce the main assumption that makes the thermodynamic analysis compat-
ible with microscopic theory. It can be viewed as a ”quasi-static” or ”local equilibrium
assumption”, but now at the level of a stochastic description: we assume that each
transition rate W(ν) obeys -at each moment- detailed balance with respect to the cor-
responding instantaneous equilibrium distribution of the system in its contact with the
corresponding reservoir ν:

W
(ν)
m,m′(t) peq,νm′ (t) = W

(ν)
m′,m(t) peq,νm (t).(52)

As equilibrium distributions, we consider the canonical case (heat reservoir):

peq,νm (t) = e−β
(ν)[εm(t)−F eq,ν(t)](53)

e−β
(ν)F eq,ν(t) =

∑
m

e−β
(ν)εm(t)(54)

and grand-canonical situation (heat plus particle reservoir):

peq,νm (t) = e−β
(ν)[εm(t)−µ(ν)nm(t)−Geq,ν(t)](55)

e−β
(ν)Geq,ν(t) =

∑
m

e−β
(ν)[εm(t)−µ(ν)nm(t)].(56)
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In the grand-canonical scenario, transitions between states involve particle transport and
hence a chemical work contribution. The energy and particle rate of change in the system
due to the coupling with reservoir ν are obviously given by

Ė(ν) =
1

2

∑
m,m′

εm,m′J
(ν)
m,m′(57)

Ṅ (ν) =
1

2

∑
m,m′

nm,m′J
(ν)
m,m′ .(58)

The corresponding chemical work rate and heat flux read:

Ẇ
(ν)
chem =

1

2

∑
m,m′

µ(ν)nm,m′J
(ν)
m,m′(59)

= µ(ν)Ṅ (ν),(60)

Q̇(ν) =
1

2

∑
m,m′

q
(ν)
m,m′J

(ν)
m,m′(61)

= Ė(ν) − µ(ν)Ṅ (ν),(62)

with

(63) q
(ν)
m,m′ = εm,m′ − µ(ν)nm,m′

the heat to the system, coming from reservoir (ν) upon making the transition from m′

to m.
We note in passing the the factor 1/2 in all above formula’s (and in the formula’s that

will follow) stems from the fact the we are counting twice the transitions between levels
m and m′. This can be avoided by replacing the sum with a restricted sum (note that
the diagonal contributions m = m′ are zero):

(64)
1

2

∑
m,m′

... =
∑

m,m′,m>m′

...

We stress that the above ”local equilibrium assumption” deals with the contact be-
tween system and reservoir. There is however no assumption whatsoever on the state of
the system itself, which can be very far from equilibrium (15). Note also that, according
to the above condition, the transition rates will automatically change in time, if the en-
ergy levels are shifted. This brings us to the final assumption, namely that the energy,
needed for the shift, is provided by an idealized work source. The time-dependence of the
energy levels is often represented by introducing a control parameter λ, with εm = εm(λ).
The idea is that λ represents an external field (e.g. an electric field) or constraint (e.g.

(15) Even a fully microscopic nonequilibrium dynamics is possible since the Markovian dynamics
include deterministic dynamics as a special case.
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the volume or a confining potential). A time-dependence of this parameter induces a spe-
cific time-dependence of all the energy levels (although there is in principle no principal
objections against a time-dependence for each energy level separately).

The above assumptions can be justified in a more detailed analysis by a separation
of time scales and by a weak coupling assumption between system and reservoirs. Both
assumptions are consistent with a closed description of the system in terms of the au-
tonomous Master equation dynamics (in which the idealized reservoirs and work source
do not appear).

We close with an important mathematical implication of our ”local equilibrium as-
sumption”, which will play a key role in connecting our stochastic analysis with the
”usual” thermodynamic formulation. For simplicity of notation, we will, here and in the
sequel, often omit the explicit time-dependence ”(t)” in the expressions. By combining
(13) and (52), we find:

ln
W

(ν)
m,m′

W
(ν)
m′,m

= ln
peq,νm

peq,νm′
= −β(ν)qm,m′ = β(ν)qm′,m(65)

In other words, the log-ratio of the transition rates (time kB) is equal to minus the heat
flow into the system coming from the corresponding reservoir, divided by kBT

(ν).

2
.
2. Ensemble stochastic thermodynamics: second law . – The entropy of the system

is formally identical to the definition that we introduced in statistical mechanics section,
i.e. we are using the Shannon entropy:

(66) S = −kB
∑
m

pm ln pm,

but with pm now solution of the Master equation (27). Our purpose is to derive an
entropy balance equation. One finds:

Ṡ = −kB
∑
m

ṗm ln pm = −kB
∑

m,m′,ν

W
(ν)
m,m′pm′ ln pm(67)

= kB
1

2

∑
m,m′,ν

(W
(ν)
m,m′pm′ −W

(ν)
m′,mpm) ln

pm′

pm
(68)

= kB
1

2

∑
m,m′,ν

(W
(ν)
m,m′pm′ −W

(ν)
m′,mpm) ln

W
(ν)
m,m′pm′

W
(ν)
m′,mpm

(69)

+kB
1

2

∑
m,m′,ν

(W
(ν)
m,m′pm′ −W

(ν)
m′,mpm) ln

W
(ν)
m′,m

W
(ν)
m,m′

.(70)



STOCHASTIC THERMODYNAMICS: A BRIEF INTRODUCTION 15

We can thus write (16)

Ṡ = Ṡi + Ṡe(71)

with

Ṡi =
diS

dt
= kB

1

2

∑
m,m′,ν

(W
(ν)
m,m′pm′ −W

(ν)
m′,mpm) ln

W
(ν)
m,m′pm′

W
(ν)
m′,mpm

(72)

= kB
∑

m,m′,ν

W
(ν)
m,m′pm′ ln

W
(ν)
m,m′pm′

W
(ν)
m′,mpm

(73)

and

Ṡe =
deS

dt
= kB

1

2

∑
m,m′,ν

(W
(ν)
m,m′pm′ −W

(ν)
m′,mpm) ln

W
(ν)
m′,m

W
(ν)
m,m′

(74)

= kB
∑

m,m′,ν

W
(ν)
m,m′pm′ ln

W
(ν)
m′,m

W
(ν)
m,m′

.(75)

We now show that these expressions are exactly what we expect (and deserve). First, we
have written the entropy production in a way that its positivity is obvious ((x−y)lnx/y ≥
0). Second, it has the structure of a sum of fluxes time forces, just like in macroscopic
irreversible thermodynamics:

diS

dt
=

1

2

∑
m,m′,ν

J
(ν)
m,m′X

(ν)
m,m′ ,(76)

J
(ν)
m,m′ = W

(ν)
m,m′pm′ −W

(ν)
m′,mpm(77)

X
(ν)
m,m′ = kB ln

W
(ν)
m,m′pm′

W
(ν)
m′,mpm

.(78)

The physical interpretation of these quantities is clear: the ”flux” J
(ν)
m,m′ is the net average

number of transitions per unit time fromm′ tom, and the ”force”X
(ν)
m,m′ is the log-ratio of

the deviation from detailed balance, both with respect to transitions induced by reservoir
ν. We stress that the entropy production is not only non-negative overall, but it is so in

each of its detailed contributions J
(ν)
m,m′X

(ν)
m,m′ . Every breaking of detailed balance, with

respect to any reservoir and/or any pairs of states, gives rises to a separately positive
contribution in the entropy production. We also stress that the above expression gives an

(16) Note (again) that the short hand notation used here Ṡi = diS/dt and Ṡe = deS/dt could
be misleading since these are not time derivatives of state functions: there are no such things
(state functions) as Si and Se!
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Fig. 1. – Schematic representation of system in contact with two reservoirs.

explicit value of the rate of entropy production, for any state of the system including far
from equilibrium states. We leave it as an exercise to show that the entropy production
is underestimated if the contributions of separate reservoirs are not identified and one
uses for example the total transition matrix W:

diS

dt
≥ 1

2

∑
m,m′,ν

Jm,m′Xm,m′ .(79)

We finally turn to the entropy flow. Using the crucial property (52), we find:

deS

dt
= kB

1

2

∑
m,m′,ν

(W
(ν)
m,m′pm′ −W

(ν)
m′,mpm) ln

W
(ν)
m′,m

W
(ν)
m,m′

(80)

= kB
1

2

∑
m,m′,ν

β(ν)J
(ν)
m,m′q

(ν)
m,m′(81)

=
∑
ν

Q̇(ν)

T (ν)
.(82)

We conclude that the entropy flow agrees with the standard expression from macroscopic
irreversible thermodynamics, being the sum of the heat flows from each reservoir ν into
the system, Q̇(ν), divided by the temperature of the corresponding reservoir.
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2
.
3. System in contact with two reservoirs: steady state and strong coupling.. – We

consider a system at steady state, in contact with two heat and particle reservoirs, with
corresponding temperature and chemical potential, T (ν) and µ(ν), ν = 1, 2, cf. Fig. 1.
At this steady state (which also implies the absence of driving, i.e., no work contribution,
asides from chemical work) we have Ė = Ṅ = Ṡ = Ẇ = 0. If the reservoirs have different
temperature and/or chemical potential, this steady state is however not an equilibrium

state, and we can identify the following heat and particle flows Ė = J
(1)
E + J

(2)
E , Ṅ =

J
(1)
N + J

(2)
N :

JE = J
(1)
E = Q̇(1) + µ(1)Ṅ (1) = −J (2)

E = −Q̇(2) − µ(2)Ṅ (2)(83)

JN = J
(1)
N = Ṅ (1) = −J (2)

N = −Ṅ (2).(84)

Furthermore, we find from:

Ṡ = Ṡi + Ṡe = 0(85)

Ṡe =
Q̇(1)

T (1)
+
Q̇(2)

T (2)
(86)

that

Ṡi = −Ṡe = JEXE + JNXN ≥ 0,(87)

with the usual expression of the thermodynamic forces:

XE =
1

T (2)
− 1

T (1)
(88)

XN =
µ(1)

T (1)
− µ(2)

T (2)
.(89)

We mention that in the domain of linear irreversible thermodynamics, the fluxes and
forces are in linear relation with each other, more precisely:

JE = LEEXE + LENXN(90)

JN = LNEXE + LNNXn.(91)

Positivity of the entropy production requires that the matrix L is non-negative. Further-
more, Onsager derived from the reversibility of the microscopic law the symmetry of this
matrix: LEN = LNE .

For the further discussion, we proceed with a constraint, called ”strong coupling”,
that plays a special role for the efficiency of machines both close to equilibrium and at
maximum power. The constraint requires that the two fluxes are proportional to each
other: JE = εJN = J . In the region of linear irreversible thermodynamics, this condition
is satisfied provided the Onsager matrix has a zero determinant detL = 0. For strong
coupling, the entropy production simplifies to:

Ṡi = JX ≥ 0(92)
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with the ”collapsed” single thermodynamic force:

X = XE +
XN

ε
=
x(2) − x(1)

ε
.(93)

with:

x(ν) =
ε− µ(ν)

T (ν)
.(94)

This situation is of special interest because reversibility, corresponding to zero entropy
production, can be achieved when X = 0 without requiring that the separate forces XE

and XN be zero. In particular, one does not need that both temperatures and chemical
potentials are equal to reach reversibility. Indeed, the condition X = 0 is satisfied
whenever x(1) = x(2).

It is revealing to evaluate the efficiency of the thermal machine that can be built with
the 2 reservoir model. For strong coupling, one finds:

J
(1)
E = Q̇(1) + µ(1)Ṅ (1) = −J (2)

E = −Q̇(2) − µ(2)Ṅ (2) = εṄ (1) = −εṄ (2),(95)

hence

Q̇(ν)

T (ν)
= x(ν)Ṅ (ν),(96)

and finally (JN = Ṅ (1) = −Ṅ (2), recall also that Carnot efficiency is given by ηc =
1− T (1)/T (2), assuming that T (1) ≤ T (2)):

Ẇchem = µ(1)Ṅ (1) + µ(2)Ṅ (2) = −Q̇(1) − Q̇(2)(97)

= (−T (1)x(1) + T (2)x(2))JN = T (2)[−(1− ηc)x(1) + x(2)]JN .(98)

We conclude that the efficiency η, being the ratio of the rate of the chemical work
produced over heat influx from the hot reservoir, in casu reservoir (2), is given by :

(99) η =
−Ẇchem

Q̇(2)
= 1− (1− ηc)

x(1)

x(2)
.

We thus indeed recover Carnot efficiency under the condition of reversibility x(1) = x(2).
We stress that the present construction is quite different from the original Carnot ma-
chine: in order to avoid irreversible heat flows (which imply entropy production and
hence make it impossible to attain Carnot efficiency), the original Carnot set-up is run-
ning in a cycle of connection and disconnection (with intermediate adiabatic steps to
change the temperature). In the present construction, the condition of strong coupling
allows to reach reversible operation -hence Carnot efficiency- in a steady state regime
where the system is at all times in contact with both reservoirs! The analysis is in fact
simplified significantly compared to the original Carnot cycle because it involves a single
steady state operation.
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2
.
4. Two-level system: efficiency at maximum power . – The previous discussion was

based on general thermodynamic arguments. We now switch to a concrete stochastic
model. This allows to calculate explicitly the basic quantity that is left unspecified in
the preceeding analysis, namely the dependence of the particle or energy flow JN and
JE on the system paramaters x(1) and x(2). As model, we consider a quantum dot with
a single available energy level at the energy ε (17), which can exchange an electron with
two leads ν (temperature T (ν), chemical potential µ(ν), respectively). The quantum dot
has only two states, 1 and 0, corresponding to the energy level filled with one electron, or
an empty energy level. The probability per unit time for an electron to jump from lead

ν into the empty level is given by W
(ν)
10 = a(ν)f (ν), where a(ν) is a coupling constant,

and f (ν) the Fermi function:

(100) f (ν) = f(x(ν)) =
1

ex(ν) + 1
.

The latter describes the occupancy rates of the energy levels in the lead. The proba-
bility for the reverse transition, an electron occupying the energy level of the dot jumping

into the lead ν, is equal to W
(ν)
01 = a(ν)(1 − f (ν)) (the 1 − f (ν) factor coming from the

fact that the corresponding energy level in the lead has to be empty for such a transi-
tion to take place). The steady state distribution for the corresponding Master equation
(W = W(1) + W(2)):

pst0 =
W01

W01 +W01
(101)

pst1 =
W10

W01 +W01
.(102)

Inserting this result into the expression of the particle and energy flow, one finds, after
some algebra:

(103) J = J(x(1), x(2)) = JE = εJN = εα[f (1)(x(1))− f (2)(x(2))],

with

(104) α =
a(1)a(2)

a(1) + a(2)
.

The ”collapsed thermodynamic force and entropy production read:

X =
x(2) − x(1)

ε
(105)

Ṡi = α[f (1)(x(1))− f (2)(x(2))](x(2) − x(1)) ≥ 0(106)

We now show how stochastic thermodynamics allows to address a question that goes
beyond the usual thermodynamic analysis. From (99) and (96), we find the following

(17) The other energy levels are supposed to be sufficiently far from the Fermi levels of the
reservoir, so that they are always full or empty and do not play a role.



20 CHRISTIAN VAN DEN BROECK

expression for the power P of our device:

(107) P = −Ẇchem =
T (2)

ε
(x(2) − (1− ηc)x(1))J(x(1), x(2)).

We raise the following question of interest: for which values of the variables x(1) and x(2)

(obviously control parameters of our device) will the power reach a maximum? These
values x(1),∗ and x(2),∗ are the solution of the following extremum condition:

∂P
∂x(1)

= 0(108)

∂P
∂x(2)

= 0.(109)

These conditions give rise to a transcendental equation, which can be solved numerically,
see [7] for more details. An even more interesting question concerns the efficiency that
is reached at maximum power. This efficiency is easily obtained by inserting the values
of x(1),? and x(2),? into (99). An analytic treatment becomes possible in terms of an
expansion in terms of Carnot efficiency ηC . We just cite the final result for the efficiency
η? at maximum power:

(110) η? =
ηC
2

+
η2
C

8
+

7 + csch2(a0/2)

96
η3
C + ...,

where a0 ≈ 2.39936 is the solution of a0 = 2 coth(a0/2)). It turns out that the coefficient
1/2 is universal for strong coupling, and is essentially a consequence of Onsager symmetry
[8]. The coefficient 1/8 is also universal under the additional condition of a left-right
symmetry (meaning that the fluxes change sign under inversion of the reservoir values
and couplings) [9]. Like Onsager symmetry, this universality can be linked at a deeper
level with the reversibility of underlying microscopic laws, and more directly to the
fluctuation theorem that we derive below in trajectory stochastic thermodynamics.

3. – Ensemble stochastic thermodynamics: more

3
.
1. General comments. – The theory that we developed so far looks consistent and

appealing, but it may appear to be tailormade for a special class of physical systems,
described by Markovian dynamics satisfying the condition of local equilibrium (52). It is
however possible to show, and this is work in progress, that the theory fits into a much
broader scheme. This is not so surprising: it is a typical strength of thermodynamic
theories to far exceed the domain application/formulation in which they are originally
presented. The Markovian context however allows to easily explore further implications
of the theory and to develop new ideas. In this section, we illustrate this with two
promising extensions.

3
.
2. Landauer principle [10, 11] . – We mentioned one of the formulations of the second

law for a system, in contact with a single heat bath, driven from one equilibrium state
into another one, namely:

T∆iS = W −∆F eq ≥ 0.(111)
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Fig. 2. – Schematic representation of the Szilard engine (with a Brownian variation below),
converting one bit of information into kBT ln 2 of work. Left: Szilard conversing with Einstein.

We added the superscript eq to stress that the free energy is, in conventional thermody-
namics, only well defined for equilibrium states, and that the above results only applies
to changes between such states. We now show that stochastic thermodynamics not only
reproduces this result, but gives a generalization for transitions between any two states,
not necessarily at equilibrium. The result is closely related to the so-called Landauer
principle, which establishes a relation between thermodynamics and information. We
start by rewriting first and second law, and the expression for the entropy flow when in
contact with a single heat reservoir (temperature T ):

Ẇ = Ė − Q̇(112)

Ṡi = Ṡ − Ṡe ≥ 0(113)

Q̇ = T Ṡe.(114)

We now introduce the non-equilibrium free energy:

F = E − TS.(115)

Combination with the previous formulas leads in a one-line calculation to

T Ṡi = Ẇ − Ḟ ≥ 0(116)
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which is so to say the ”instantaneous” generalization of (111). To make a clearer com-
parison, it is revealing to integrate this result over an interval of time:

T∆iS = W −∆F = W −∆F eq − T∆I ≥ 0.(117)

This result is valid for any initial and final condition. To compare with equilibrium
states, we have introduced the quantity I:

F − F eq = TI(118)

I = kBD(pm||peqm) = kB
∑
m

pm ln
pm
peqm

,(119)

which is a measure of the distance between the actual distribution and an equilibrium
one. The most important upshot of the new result (117) is that the amount of work
−W , that can be generated by changing the state of a system, is at most equal to the
decrease of equilibrium free energy −∆F eq plus the decrease in ”information content”
−T∆I. We give a simple illustration, which at the same time makes the contact with
the so-called ”Landauer principle”, see Fig. 2. We consider a single particle in a box,
and identify the states m = 0 and m = 1 as being in the left and right half of the
box, respectively. At equilibrium one has peq0 = peq1 = 1/2. We however consider the
following nonequilibrium initial state p0 = 1 and p1 = 0. Such an initial condition
could have been prepared (by compressing the particle in the left hand side of the box),
or by performing a measurement, revealing that the particle is in that half side of the
box. This corresponds to the information of 1 bit. In either case, our formula predicts
that we can extract work out of this nonequilibrium initial condition, namely (at most)
−T∆I = TI(t = 0) = kBT ln 2 (we use the physically relevant limit ”0 ln 0” = 0). In
words one can extract at best kBT ln 2 work from erasing one bit. In the same way, one
proves that writing one bit cost at least kBT ln 2 of work [12].

3
.
3. Adiabatic and non-adiabatic entropy . – Let us return to the explicit expression

(72) for entropy production, and in particular to that for the thermodynamic force (78).
One easily verifies that the latter can be split into two separate contributions:

X
(ν)
m,m′ = A

(ν)
m,m′ +N

(ν)
m,m′(120)

A
(ν)
m,m′ = kB ln

W
(ν)
m,m′p

st
m′

W
(ν)
m′,mp

st
m

(121)

Nm,m′ = kB ln
pm′p

st
m

pmpstm′
.(122)

This results in a splitting of the entropy production into two contributions that are, and
this is somewhat surprising, separately non-negative:

Ṡi = Ṡa + Ṡna ≥ 0(123)

Ṡa =
1

2

∑
m,m′,ν

J
(ν)
m,m′A

(ν)
m,m′ ≥ 0(124)

Ṡna =
1

2

∑
m,m′,ν

J
(ν)
m,m′Nm,m′ =

1

2

∑
m,m′

Jm,m′Nm,m′ ≥ 0.(125)
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The proof again follows from the inequality lnx < 1−x, conservation of probability (31)
and the fact that pst is the instantaneous ”steady state”, cf. (32). One can give the fol-
lowing interpretation: the so-called adiabatic contribution Ṡa to the entropy production
is the one that survives when one takes the ”adiabatic” limit in which the probability
distribution is at all times equal to the (instantaneous) steady state. It is in particular
equal to the full entropy production when operating at a steady state (time-independent
rates). Note that this component will be only zero when operating at full equilibrium.
At nonequilibrium steady states it has a constant non-zero value, expressing the amount
of irreversible dissipation needed to maintain this state.

The contribution Ṡna is a ”relaxational” entropy production, internal to the system. It
only depends on the total transition matrix W, and can be rewritten under the following
way

Ṡna = −kB
∑
m

ṗm ln
pm
pstm
≥ 0.(126)

In the special case of constant transition matrix (so that pst is a time-independent quan-
tity), one verifies that Ṡna = −kBḢ. This gives a physical meaning to the H function: its
time derivative is minus the non-adiabatic entropy production. Only in the special case
of an equilibrium steady state does it correspond to minus the (full) irreversible entropy
production.

3
.
4. Other extensions. – We will be very brief and give an haphazard list of other

developments. One can include driving in the above discussed example of a quantum
dot, by considering a time-dependent energy ε. The system can then also operate via a
traditional Carnot cycle (system in contact with only one of the reservoirs at any given
time), and one can show that both Carnot efficiency and efficiency at maximum power are
reproduced. One can also discuss energy injection in a steady state by considering a ran-
dom perturbation of the energy level. Again all the ”familiar” thermodynamic features
are reproduced, including also the issue of work to work conversion engines (the driving
can be used to pump particles up a chemical gradient). Universal features, similar to
those for thermal machines, can be derived [13, 14]. Several variants of systems with two
quantum dots have been studied, including a photo-electric cell [15] and photo-electric
cooling [16]. Another model that was studied in the context of efficiency at maximum
power is a maser model [9]. One can relax the condition of ”local equilibrium” for the
transition rates. In this case a new contribution appears in the entropy production, which
can be interpreted in terms of a ”Maxwell demon” that breaks the detailed balance of
the transition rates [17]. Using Markovian partitions, a connection can be established
between the entropy production discussed here and the concept of Kolmogorov-Sinai en-
tropy in dynamical systems [18]. In an early paper [19], it is shown that the steady states
close to equilibrium are the states of minimum entropy production. A large section of the
literature deals with stochastic thermodynamics for Langevin equations [20, 21, 22, 23].
Note however that the formulation for Master equations includes, as a particular case, the
continuous Markov processes described by Fokker Planck and Langevin equation, since
they can be obtained -via an appropriate limiting procedure- from a Master equation.
As an historic note, we mention that the ”early steps” in the development of ensemble
stochastic thermodynamics were in fact taken at the level of a Master equation descrip-
tion [24, 25, 19, 26], with (nonequilibrium) chemical reactions as prototypical example,
followed more than a decade later by similar and further developments in the context of
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Fig. 3. – The work w needed to stretch a RNA strand with optical tweezers is a random variable.

soft condensed matter, with (driven) overdamped Brownian motion as workhorse [21, 22].
The Langevin version of the adiabatic and non-adiabatic entropy production is derived
in [27]. For a further review of the theory and applications in the context of Langevin
and Fokker Planck equations, see [28, 29].

4. – Trajectory stochastic thermodynamics

4
.
1. Motivation. – We discussed on several occasions one of the traditional formula-

tions of the second law, namely T∆iS = W − ∆F eq ≥ 0, giving a bound for the work
on a system undergoing a change between two equilibrium states, while in contact with
a heat bath. We stress that classical thermodynamics does not specify the value of W ,
it only gives a lower bound. This bound is reached for a reversible (and in particular
infinitely slow) process. As example, consider the expansion of an ideal gas (temperature
T , number of particles N) from initial volume Vi to final volume Vf . We can extract

an amount of work −W ≤ −∆F eq = T∆Seq = NkBT lnVf/Vi =
∫ Vf
Vi

PdV (∆Eeq = 0

for isothermal change in an ideal gas). The limit is reached for a quasi-static isothermal
expansion. For any other (e.g., faster) scenario, the extracted work will be less. Note
however that the same amount of work will be needed when one repeats the experiment
in the same way, i.e., W is a self-averaging quantity in such a macroscopic experiment.
Consider now a similar experiment but on a small (non-macroscopic) scale, for example
the elongation of a polymer (e.g., RNA strand) with optical tweezers from an initial to
a final equilibrium position, cf. Fig.3. The amount of work can be obtained from force
versus elongation curves (work being force time displacement). We now observe that
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this quantity will be different in one run from another, because the system is subject
to fluctuations (18). We denote it by w, using a lower script to stress that the quantity
depends on the particular trajectory Π that the system happens to follow in the given
run, w = wΠ . The question now arises concerning the connection with the second law.
One could argue that the second law only applies to macroscopic systems. Hence one
should do the experiment with a macroscopic number N of independent RNA strands.
By the law of large numbers, the work per strand will converge to its average value,
and the second law becomes: N < w > −∆F eq ≥ 0 (where the free energy difference
∆F eq refers to that for a collection of N RNA strands ). This may look, at first, like a
satisfactory explanation. However, by repeating the above experiment, one can construct
the probability distribution P (w). It looks odd that the second law of thermodynam-
ics, being one of the most fundamental laws in nature, just prescribes an upper bound
for the first moment of this distribution. We now proceed to show that one obtains a
much deeper formulation of the second law as a symmetry property of this probability
distribution, which implies in particular the above inequality for its first moment. We
will derive this symmetry property in the context of stochastic thermodynamics, but we
stress that it has -in our opinion- a much deeper validity, as documented in the literature
in several other specific or general settings (thermostated systems, classical and quantum
dynamics, relativity and quantum field theory).

4
.
2. First law: trajectory thermodynamics [28] . – Let us return to our stochastic de-

scription of a system with states m and probability distribution pm, obeying a Markovian
Master equation. For simplicity (and because of lack of space and time), we will in the
sequel assume that there is no particle transport involved (so we need not worry about
the change of particles upon jumping between levels and the associated chemical work).
We will now focus on various properties of the system, not at the ensemble level, but at
the trajectory level. A trajectory, generically denoted by Π, corresponds to the specifi-
cation of the actual state in the time interval under consideration, i.e., m(t), t ∈ [ti, tf ].
In view of the discrete nature of the state, one can alternatively specify the initial state
mi = m1 = m(ti), the jumps from mj to mj+1 at specific instances of time tj+1,j ,
j = 1, ..., N − 1 where N − 1 is the total number of jumps, and mf = mN = m(tf )
being the final state at time tf . To stress that we are dealing with trajectory dependent
quantities, we will use a lower script, e.g., ∆e for energy difference, w for work, q for heat
heat (and s for entropy, to be defined in the next section). Most of the time, we suppress
for simplicity of notation the reference to the particular trajectory under consideration
(∆e = ∆eΠ , w = wΠ , q = qΠ , etc.).

The energy is well defined, even at the level of trajectories: the energy at time t is
the energy of the particular state m(t) in which the system resides at that time in the
trajectory under consideration:

(127) e = eΠ(t) = εm(t)(t).

The energy is in fact a state function, but the state is now the actual micro-state of
the system (compare with the ensemble picture, where E is also a state variable, but

(18) The only and notable exception is an infinitely slow process, in which the work is always
the same and equal to the (equilibrium) free energy difference. We will see below that the
probability distribution for w then indeed reduces to a delta function.
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Fig. 4. – Schematic representation of the first law along a trajectory.

expressed in terms of the statistical state, i.e. the probability distribution over the energy
levels). In particular the energy e(t) at time t for a trajectory Π depends only on the
state of the system at that time, and not on the remainder of the trajectory. For the
same reason the energy difference ∆e only depends on final and initial states: the change
∆e between any initial and final times ti and tf is given by:

∆e = ef − ei = εmf (tf )− εmi(ti).(128)

Conservation of energy is of course valid trajectory-wise, so one can write the first law
of thermodynamics trajectory-wise (i.e. valid for any trajectory Π) :

∆e = w + q.(129)

As in the ensemble picture, heat and work are not state functions but depend on the
actual trajectory that the system has followed (in addition to the dependence on the way
the perturbation is applied). They are related, respectively, to the jumps between energy
levels and the shift in energy level, as they occur along the trajectory under consideration.
Explicitly, one has for the trajectory Π:

w = [εm1
(t2,1)− εm1

(ti)] + [εm2
(t3,2)− εm2

(t2,1)] + ...+ [εmN (tf )− εmN (tN,N−1)]

q =
∑
jumps

qj+1,j qj+1,j = εmj+1(tj+1,j)− εmj (tj+1,j).
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In case of different thermal reservoirs ν, a trajectory Π needs also to specify which reser-
voir is responsible for which transition, so that one can further specify the subdivision
of the heat flow into contributions due to the different reservoirs:

q =
∑
ν

q(ν),(130)

where q(ν) is the sum of those energy jumps, for which the heat comes from reservoir ν.
It is instructive to reproduce the first law in its differential form. To do so, we rewrite

the expression (127) for the energy as follows:

(131) e(t) = εm(t)(t) =
∑
m

εm(t)δKrm,m(t),

so that the two contributions, work rate and heat rate, appear quite naturally as before
from the modulation of the energy level and from the change in state (the ”jumps”),
respectively:

ė = ẇ + q̇(132)

ẇ =
∑
m

ε̇m(t)δKrm,m(t)(133)

q̇ =
∑
m

εm(t)δ̇Krm,m(t).(134)

One easily verifies the agreement between the integral and differential formulation of the
first law (19).

4
.
3. Second law: trajectory thermodynamics. – A main hurdle is to define entropy at

the trajectory level. This may appear, at first, to be an oxymoron since, as argued so
forcefully by Boltzmann in his historic debate about the second law, entropy is property of
the ensemble. One can however attach an entropy to an event taking place in a sampling
of a random variable. This is routinely done in information theory, where one quantifies
the concept of surprise as − ln pm upon observing the outcome m when its probability
is pm [6]. There is no surprise when pm = 1 and the surprise becomes increasingly large
when pm → 0. Upon repeating the experiment, we find that the average surprise is equal
to the entropy S = −Σmpm ln pm. We can of course use the same concept when both p
and m are time-dependent and thus define the stochastic or trajectory entropy as follows:

(135) s = sΠ(t) = −kB ln pm(t)(t).

In other words, the entropy of the system in a specific trajectory is, at each time, minus
the logarithm of the probability, at that time, to be in the observed state. While being,

(19) To find the time-derivative of the Kronecker delta, note that δKr
m,m(t) goes from zero to one,

and from one to zero, when m(t) jumps into, or our of state m, respectively. Hence the time-
derivative consists of a sum of delta functions, with weights +1 and −1, centered at the time of
the jumps.
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like the energy, a ”micro-state” variable, function of m(t), it retains an ”ensemble qual-
ity”, since its value is also determined in terms of the probability distribution pm (at the
same time t). This definition of the stochastic entropy was introduced by U. Seifert [29].

We proceed to show how the above definition of stochastic entropy leads to a pleasing
formulation of the second law at the trajectory level, and even more importantly will
result in a profound reassessment of the second law itself. Being a micro-state function,
we find that the change of stochastic system entropy over a finite time interval [ti, tf ] is
given by:

(136) ∆s = −kB ln pmf (tf ) + kB ln pmi(ti).

In analogy with the second law, we would like to split this system entropy change into
an entropy flow and an entropy production term. At the ensemble level, the entropy flow
is average heat flow divided by temperature (of the corresponding reservoir). Heat flow
is however equally well defined at the trajectory level, as we discussed in the previous

section. Recalling that q
(ν)
j+1,j is the heat taken from reservoir (ν) upon the jump from

mj to mj+1, we can immediately write the trajectory version of the entropy flow:

(137) ∆es =
∑
jumps

q
(ν)
j+1,j

T (ν)
.

It will be usefull, when discussing the entropy production, to rewrite this expression using
the basic property (65) as follows:

(138) ∆es = −kB
∑
jumps

ln
W

(ν)
j+1,j

W
(ν)
j,j+1

.

By combining Eqs. (136) and (138), we obtain the following expression for the trajectory
entropy production:

(139) ∆is = ∆s−∆es = −kB ln pmf (tf ) + kB ln pmi(ti) + kB
∑
jumps

ln
W

(ν)
j+1,j

W
(ν)
j,j+1

.

Note that this quantity can have any sign. We will in fact show below that ∆is can
not always be non-negative, i.e., there must exist trajectories for which it is negative.
But before rewriting the above not so beautifull expression into a form, that will allow
us to make such sweeping statements, we make a first simple ”test”. Let us consider the
experiment that we mentioned before as one motivation for trajectory thermodynamics: a
small scale system in brought from one equilibrium state into another one, under injection
of an amount of work w. When the experiment is repeated, the detailed trajectory that
the system will follow is different and hence the work will also change. It would be
very pleasing if one finds that the above introduced entropy production is related to this
work, in a way similar to the macroscopic counterparts, cf. (111) and (117). We therefore
consider the system in contact with a heat bath at temperature T , and introduce the
stochastic free energy :

(140) f = e− Ts,
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which is obviously also a micro-state function.
Combination of the stochastic second law, cf. (137) and (139), with the stochastic

first law (129 ) leads to:

(141) T∆is = w −∆f,

which is the stochastic analogue of (117).
We now identify the expressions for the stochastic entropy and free energy when the

probability distribution pm has an equilibrium form. For a canonical distribution (13)
one finds (instating the subscript eq to stress that we are dealing with the equilibrium
distribution):

seq =
e− F eq

T
,(142)

hence

feq = F eq.(143)

At equilibrium, the stochastic free energy reduces to the ensemble averaged free energy,
and is independent of the actual micro-state m! In particular, if initial and final condi-
tions are at equilibrium, we find from (141) that:

(144) T∆is = w −∆F eq.

This result is of particular interest since the statistical properties of the random variables
∆is and w are now essentially the same (∆F eq being a given fixed amount). As in the
ensemble average case, we would like to differentiate this result from the situation where
initial and final distributions are not at equilibrium. We define, in analogy to (118):

f − feq = Ti(145)

i = kB ln
pm
peqm

,(146)

so that we can rewrite (141) as follows

T∆is = w −∆F eq − T∆i.(147)

We finally turn to an alternative expression of the stochastic entropy production ∆is,
which will allow to derive a deep symmetry relation concerning its stochastic properties.
We start by defining a ”forward” experiment by applying a specific time-dependence of
the transition rates W(t), in the interval [ti, tf ] starting from a given initial distribution
pm(ti) at the initial time ti. In this experiment, one can identify the probability P(Π)
to observe a specific trajectory Π. We now define a time-reversed ”tilde” experiment.
The initial probability distribution is the final distribution of the forward experiment.
The rates W̃ are the rates W, but being ran backward in time. We denote by P̃(Π̃) the
probability to observe the time-reversed trajectory Π̃ in this time-reversed experiment
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(20). We now write what we believe to be the single most important expression in
stochastic thermodynamics:

(148) ∆is = kB ln
P(Π)

P̃(Π̃)
.

The proof goes as follows. The probability P(Π) to observe the specific trajectory Π, cf.
Fig. 4, is equal to the probability pmi(ti) to start in the state mi times the probability
to stay in this state until the first jump, times the probability to make this jump, and so
on for the other jumps, with a final factor expressing that the system does not leave its
final state mf . The probabilities (per unit time) to make the jumps are of course well
known, namely

(149) W
(ν)
j+1,j .

The probability for not making a jump while in state m during an interval of time [t, t′]
is given by (ti = t+ idt with dt = (t′ − t)/n):

(150) lim
n→∞

n∏
i=1

[1−
∑

m′,m′ 6=m

Wm′,m(ti)dt] = lim
n→∞

n∏
i=1

[1 +Wm,m(ti)dt] = e
∫ t′
t
Wm,m(τ)dτ

Turning to the probability of the reverse trajectory, we make the crucial observation that
the latter contributions are exactly the same: the probability for not making transitions
are identical in forward and backward trajectories. The probability for making (the
backward) jumps on the other hand are obviously given by

(151) W
(ν)
j,j+1.

The probability for the starting state mf of the reverse trajectory is, by assumption,
given by pmf (tf ). We thus conclude that:

ln
P(Π)

P̃(Π̃)
= ln pmi(ti)− ln pmf (tf ) +

∑
jumps

ln
W

(ν)
j+1,j

W
(ν)
j,j+1

,(152)

which is indeed identical to ∆is/kB . One should give credit to G. Crooks, who realized
the above cancelation (in his phd thesis [31]) and applied it to the heat flux (which is in
fact the entropy flow):

(153) ∆es = −kB ln
P0(Π)

P̃0(Π̃)
= −kB

∑
jumps

ln
W

(ν)
j+1,j

W
(ν)
j,j+1

.

(20) Note that we are in fact dealing here with functional probability densities for paths. Note
further that we assume the variables m to be even function of the momenta, and that there is
no magnetic field.
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Here P0 and P̃0 are the probabilities for the trajectory Π and Π̃ disregarding the con-
tribution for the starting probabilities pmi(ti) and pmf (tf ). In most earlier works, this
contribution, which is in fact equal to ∆s, was referred to as ”the boundary term” whose
physical significance was not fully realized until the work of Seifert.

Before turning to the ”dramatic” implications of (144), we close the loop by returning
to the ensemble expression for the entropy production. As ∆is is the entropy production
for a specific trajectory Π, which occurs with probability P(Π), the average entropy
production reads:

(154) ∆iS =< ∆is >= kB
∑
Π

P(Π) ln
P(Π)

P̃(Π̃)
= kBD(P||P̃) ≥ 0.

We immediately recognize, with contentedness and satisfaction, that this is indeed a
non-negative quantity. One can also verify with relief that it corresponds to the time
integrated version of the ensemble entropy production Ṡi given in (72), ∆iS =

∫ tf
ti
Ṡidt.

As if all this was not pleasing enough, we close with another bonus of the above
result. It was derived from a Master equation description, but the expression for the
stochastic entropy production is expressed in terms of probability for paths, without
explicit reference to the transition matrix. Since Langevin/Fokker Planck equations can
always be obtained via a limiting procedure for a Master equation, the same result applies
for this description, but the probabilities of the paths now refer to Brownian paths (21).
The conclusions that we will derive in the next section do not depend on the detailed
form of the trajectories and therefore apply equally well to any Markovian process, be it
a jump process, a continuous process or a combination of both.

4
.
4. Integral and detailed fluctuation theorem.. – We are now ready to ”move to the

top”. We will start with the so-called integral fluctuation theorem. Instead of looking
at the ”usual” ensemble entropy production ∆iS, the average of the stochastic entropy
production ∆is, let us consider the following average:

〈e−∆is/kB 〉 = 〈 P̃
P
〉 =

∑
Π

P P̃
P

= 1,(155)

where we used the fact that P̃ is a normalized probability (and the sum over all forward
paths a sum implies over all backward paths (22)). The above expression is called the
integral fluctuation theorem. Note that is holds for any initial probability distribution
(and any perturbation in the sense of time-dependent transition rates). It implies, by
Jensen’s inequality [6], the ”usual” second law:

(156) ∆iS = 〈∆is〉 ≥ 0.

For the special case that the transition is between equilibrium states at the same
temperature, we know that T∆is = w − ∆F eq, and the above expression reduces to

(21) Fokker Planck equations describe so-called continuous Markov processes with realizations
that are continuous, but nowhere differentiable.
(22) To be more precise, we need to show that the Jacobian for the transformation of forward
to backward paths is one. This property in fact derives at the most fundamental level from
Liouville’s theorem.
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the celebrated Jarzynski equality (originally derived in the context of a microscopic
Hamiltonian [32], and later for a mesoscopic Markovian description [33]):

〈e−βw〉 = e−β∆F eq .(157)

This result is quite remarkable since it applies independently of the type of perturbation
and the intermediate departure of the system from equilibrium, while it incorporates via
Jensen’s inequality the ”traditional” second law information 〈w〉 ≥ ∆F eq.

For transitions between nonequilibrium states one obtains, using (147), a generalized
Jarzynski equality:

〈e−β(w−T∆i)〉 = e−β∆F eq ,(158)

which by Jensen’s inequality implies the earlier discussed Landauer principle, cf. (117).
The above integral fluctuation theorems can be derived from an even more ”detailed”

property, which is appropriately called a detailed fluctuation theorem. We ask the fol-
lowing question: given an experimental setting (initial condition and driving), what is
the probability P (∆is) to observe a change in the stochastic entropy equal to ∆is?
Obviously, this probability can be calculated as follows

P (∆is) =
∑
Π

P(Π)δ(∆is− kB ln
P(Π)

P̃(Π̃)
)(159)

= e∆is/kB
∑
Π

P(Π̃)δ(∆is− kB ln
P(Π)

P̃(Π̃)
)(160)

= e∆is/kB
∑
Π̃

P(Π̃)δ(−∆is− kB ln
P̃(Π̃)

P(Π)
)(161)

= e∆is/kB P̃ (−∆is),(162)

where

(163) P̃ (−∆is) =
∑
Π̃

P(Π̃)δ(−∆is− kB ln
P̃(Π̃)

P(Π)
).

We are thus lead to the famous fluctuation theorem:

(164)
P (∆is)

P̃ (−∆is)
= e∆is/kB .

In words: it is exponentially more likely to see a stochastic entropy increase ∆is in an
experiment, than to see a corresponding decrease −∆is in the time-reverse experiment.
Before proceeding to a further discussion and illustration of this amazing result, we need
to address a possible source of confusion in the notation and subtlety in the definition
(163): −∆is is clearly minus the entropy production in the forward path, but how is it
related to the entropy change in the backward path? It turns out that −∆is is indeed the
entropy production in the backward path Π̃ under the special condition that both initial
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and final conditions of the trajectory are stationary states. Indeed we can apply the
general result to find the entropy production ∆is̃ of a path Π̃ in the backward protocol:

(165) ∆is̃ = kB ln
P̃(Π̃)
˜̃P( ˜̃Π)

.

It is obvious that ˜̃Π = Π. However ˜̃P = P only if the initial and final distribution
match: the final distribution of the backward scenario has to be the initial distribution
of the forward trajectory. This will in general only be the case if the initial and final
distributions are stationary (which in an experiment means that we have to stop the
driving and wait until the steady state is reached). Under this condition one concludes
that ∆is̃ = −∆is, and the fluctuation theorem takes on the additional meaning that one
compares the entropy productions in forward and backward experiments. A simple and
important application are so-called the nonequilibrium steady states. In this case, we
have no driving so that furthermore P̃ = P. Hence it is, in this case, exponentially more
likely to see a stochastic entropy increase ∆is than to see a corresponding decrease −∆is
in the same experiment.

We close with some comments on the solution of (144), which we write now as a
mathematical condition on a probability density P (x) and its twin P̃ (x) (x = ∆is/kB):

(166)
P (x)

P̃ (−x)
= ex.

We mention the interest of the cumulant generating function:

(167) G(λ) =

∫
dxP (x)e−λx,

and a similar definition for G̃ in terms of P̃ . One easily verifies that the detailed fluctu-
ation theorem Eq. (166) is equivalent with the following symmetry property:

(168) G(λ) = G̃(1− λ).

The calculation of the cumulant generating function is in most cases easier than that of
the probability distribution. Furthermore, the detailed fluctuation theorem can often be
proven without an explicit calculation by showing that the equation for the cumulant
generating function possesses the above symmetry [34, 35]. Furthermore, the cumulant
generating function gives direct access to the cumulants of the corresponding quantities,
which can often be evaluated exactly in a large time limit (large deviation function).

Considering the simple case, P = P̃ , one can try as solution a Gaussian probability
distribution (with average 〈x〉 and dispersion σ2), to find that it is a solution provided
the dispersion is twice the average:

(169) PG(x) =
e−

(x−〈x〉)2
4〈x〉√

4π〈x〉
.



34 CHRISTIAN VAN DEN BROECK

One concludes that the general solution of (166) is thus given by this Gaussian times any
non-negative even function (with proportionality factor guaranteeing normalization):

P (x) = PG(x)f(x)(170)

f(x) = f(−x) ≥ 0(171) ∫ ∞
−∞

dxPG(x)f(x) = 1.(172)

Of special interest in the case of a Gaussian distribution with vanishing mean: one finds
P (x) = δ(x). This corresponds to equilibrium with the stochastic entropy production
being always zero. Hence at equilibrium there is no entropy production even trajectory-
wise. When the system is not at equilibrium, the distribution will have a finite width.
Consider again a nonequilibrium steady state (so that P = P̃ ). Note the somewhat
surprising implication now of (166): in order to have trajectories with positive stochastic
entropy production, there must also be trajectories with a corresponding negative entropy
production, even though the latter are exponentially unlikely compared to the former.

Finally we again note that in transitions between equilibrium states (temperature T ),
one can identify the entropy with work via T∆is = w − ∆F eq, and obtain the famous
Crooks’ relation [36]:

(173)
P (w)

P̃ (−w)
= eβ(w−∆F eq).

There are by now many illustrations of this beautiful relation. We cite in particular the
early experimental verification for the work upon opening and closing of an RNA hairpin
[37], the computer simulations of a Joule experiment of dragging a triangle through an
ideal gas [38], and the thought experiment of a photon exchange between black bodies at
equilibrium at a different temperature [39]. Note on the other hand that the verification
of the above relation requires working on an energy scale of the other of kBT .

5. – Perspectives

The above discussion is only the beginning of what can be done with trajectory ther-
modynamics [40, 41, 42, 43, 44, 45, 46, 47] see also [29, 48, 49, 50]. All the additional
features and problems that we discussed at the ensemble level can be reconsidered at the
trajectory level, in particular the splitting of the stochastic entropy into an adiabatic and
a non-adiabatic component, the identification of a stochastic contribution for informa-
tion processing, the discussion of various models, etc.. There are furthermore questions
specific to the trajectory picture, notably the so called Feynman Kac formula [51], which
in its origin considers functionals of Brownian motion, and shows how these are related
to the solution of a differential equation (in particular the Schrodinger equation). The
quantities we are dealing with here are functionals of more general Markov processes, but
analogous techniques can be developed for this case. These results allow to rederive On-
sager symmetry and beyond [52], to obtain the famous fluctuation dissipation theorem,
linking response properties to equilibrium correlation functions, and beyond [53, 54, 55],
and even to discuss response when perturbing a nonequilibrium steady state or even a
general time-dependent reference state [56]. The fluctuation and work theorem have also
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been proven in various other contexts, notably for microscopic classical and quantum
Hamiltonian dynamics, for thermostated systems, and for non-Markovian processes. A
lot of work has also gone into the study of the large deviation properties for trajectory
dependent quantities in nonequilibrium steady states, such as the (heat or particle) fluxes
to the reservoirs (since these are in principle more easily accessible). The best studied
model in this context is probably the asymmetric exclusion model [57]. It may, at first
sight, appear difficult to verify experimentally the predictions of trajectory thermody-
namics. Yet a number of beautifull experiments have recently been carried out, in which
a very good agreement is obtained with the theoretical predictions [37, 58, 59, 60, 61].

We end with a sweeping conclusion. Thermodynamics is probably the only branch of
physics that has found applications in almost all fields of science. Providing a novel and
extended framework for thermodynamics is therefore expected to have very productive
and possibly also very deep implications. It remains to be seen how many of the above
ideas presented above supersede the framework in which they were formulated. It is
encouraging to see that the fluctuation theorems remain valid (with appropriate inter-
pretation) for quantum and relativistic dynamics. Furthermore the quantum case raises
very interesting new questions dealing with typical quantum features [62, 63, 64], such as
interaction between system and reservoir, energy uncertainty principle, the measurement
process, the quantums of transport, entanglement, Bell inequalities and quantum com-
putation. It is also tempting to speculate that these new insights can be used profitably
to make more efficient machines at the small scale. Many novel constructions for such
thermal engines and refrigerators have indeed recently been proposed in the literature.
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