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The reconstruction problem  


How do we reconstruct an unknown function given some 
noisy and possibly contradicting data?



•  Assume some parameterization and find the best fitting 

(highest likelihood) parameters. (Parametric) 

•  Find the best spline between chosen points, implicitly 

applying a high frequency cutoff. 

•  Find the best fitting curve in a finite family of functions.  

(E.g. Genetic Algorithms given a grammar?) 


•  Allow any function, but impose a prior metric on the 
space of possible curves, so that some are more 
probable than others; then find the most probable 
function given the data. 




Gaussian processes  


The simplest metric to impose is a multi-variate Gaussian 
(or sometimes called a multi-variate normal, MVN.) 



This can be defined by a mean function and a covariance 
between points: 









Given some representation of a curve (a finite number of 
points, or a binning) we can evaluate its prior probability:   

�f(x)� = m(x)

�(f(x)−m(x))(f(x�)−m(x�))� = K(x, x�)

P(f(x)) =
1

(2π)n/2 det |K|
e−

1
2 (f(x)−m(x))TK−1(f(x)−m(x)) = N (m(x),K)



The data model   


The data inherits the correlations of the function and the 
correlations of the noise. 













Similarly, we can cross correlate the data with the 
underlying function: 





Note the noise covariance is not relevant here. 


y(x) = f(x) + n(x) �n(x)� = 0

�y(x)� = m(x)

�(y(x)−m(x))(y(x)−m(x))� = K + C

�n(x)n(x)� = C(x,x)

�(y(x)−m(x))(f(x)−m(x))� = K(x,x)



The joint probability   


Suppose we have data at some set of n points x and we 
want to correlate it with the function at some other set of 
m points x*. !


We can calculate the probability of the data vector and 
the function vector both being true: 



 





Note that these matrices have different sizes n x n, n x m, 
m x n and m x m. 


P
�
y(x)
f(x∗)

�
= N

�
m(x)
m(x∗)

�
,

�
K(x,x) + C(x,x) K(x∗,x)

K(x,x∗) K(x∗,x∗)

�



The conditional probability   


What we really want to know is the most likely function 
vector given a data vector. 







Through a miracle of inverting a partitioned matrices, this 
has an analytic solution:





 !





P(f(x∗)|y(x)) = 1

(2π)m/2 det |A|1/2
e−

1
2 (f(x

∗)−b(x∗))TA−1(f(x∗)−b(x∗))

P(f(x∗)|y(x)) = P(y(x), f(x∗))

P(y(x))

b(x∗) = m(x∗) +K(x∗,x)(K(x,x) + C(x,x))−1(y(x)−m(x))

A(x∗,x∗) = K(x∗,x∗)−K(x∗,x)(K(x,x) + C(x,x))−1K(x,x∗)



The peak of conditional probability   


The conditional distribution is just a normal distribution 
with peak given by 





and with a known covariance, A. 



We can similarly calculate derivatives or integrals of the 
function. As linear functions of f(x), they are also Normal 
distributed with easily calculable means and covariances.



In this way, given data of supernovae luminousities, we 
can reconstruct w(z) and its covariance.  (Shafieloo, et al., 
Seikel et al. 2012.) 


b(x∗) = m(x∗) +K(x∗,x)(K(x,x) + C(x,x))−1(y(x)−m(x))



What prior to take?   


The big question is what prior (m(x), K(x,x’)) to take for the 
function. 



The standard approach is to assume the covariance is 
stationary in some variable, which means that it is taken 
to be translation invariant: 





It is also common to take a two parameter form 
describing its amplitude and correlation length: 





These hyper-parameters are found by fitting to the data, 
given some priors on the hyper-parameters themselves.  


K(x, x�) = K(|x− x�|)

K(|x− x�|) = σ2e−(x−x�)2/�2c



The prior choice    


The priors are Gaussian and dependent on the data sets 
one chooses to use. 



The hyper-parameters are chosen to fit mean properties of 
the data, e.g. 





These then determine the higher order smoothing imposed 
by the prior. 



This makes the choice of the mean function very important, 
but it can be difficult to choose this in a model independent 
way.  


σ/�c ∼ �(y −m)��σ2 ∼ �(y −m)2�



What people have done    


The answers vary depending on what and how GP is 
applied, and the range of data one has. 



Seikel et al. (2012) apply GP to the dimensionless 
luminousity distance D(z), and assume m(z) = 0 to infer a 
distribution for w(z).



Shafieloo et al. (2012) apply GP to 1/H(z) and assume a 
mean defined by a local averaging to infer q(z). 



Even applied to the same data set, they could get much 
different results because their effective priors translate quite 
differently.  




What people have done    


Earlier work by Holsclaw et al. (2010) did the reverse of the 
classical Gaussian process procedure. 



Instead of setting a prior on the observational space, they 
used MCMC to generate simulated data in w(z), and then 
use Gaussian Processes to translate this into an observed 
variable.  This they use to calculate a likelihood, which they 
feedback into the MCMC chain.  



The Gaussian prior is in w(z) space, and its hyper-
parameters are trained via MCMC’s as well; these will 
change for every new MCMC step.  However, new w(z) 
guesses are taken using a flat measure in w(z) space. 




What we have done    


In our work, (Crittenden et al. 2009, 2012, Zhao et al 2012) 
we use a Gaussian prior on w(a) but it is not formally a 
Gaussian Process method. 



Our prior is determined by what we might expect from 
theoretical grounds, and tuned so those models are 
reconstructed with little bias and minimal variance.  

We do assume a phenomenological form with translation 
invariance in scale factor. 



Our implementation is simply to add a theoretical term to the 
total chi-squared, which is then implemented in a standard 
MCMC approach.  




Comments on Gaussian Processes     


Gaussian processes can yield quite different results 
depending on how it is implemented. 



The choice of what function to fit makes a big difference. 

•  One could interpret data in any number of bases: SN-

magnitude, D(z), H(z), 1/H(z).  Each of these translates 
into a different effective prior in w(z) space. 




The choice of the mean function also can make a big 
difference, and can radically alter the derived prior 
covariance. 



Usually applied to functions which are positive definite and 
monotonically increasing, so not particularly Gaussian!  




Warning for consistency checks


Often people look at tests of consistency of reconstructions 
of different types of data to some broader framework, e.g. 
DA(z) versus DL(z). 



If these are reconstructed with different effective priors, 
which don’t themselves satisfy the consistency relations, 
then one shouldn’t be surprised if the reconstructions don’t 
satisfy the consistency relations either!  



This could also relate to Genetic Algorithms; depending on 
the grammars chosen, there may simply not be the 
functional freedom to find two functions which satisfy the 
consistency relations. 




Prior principal components
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Perhaps surprisingly, the different correlation functions all have 
virtually the same eigenvectors, ordered in the same way.  These 
are effectively the Fourier modes. 



All that changes are the eigenvalues, but the highest frequency 
modes are always the most strongly constrained by the prior.  This 
is precisely the opposite of the data constraints. 



