An attempt to clarify the neutrino abundance and mass impact on CMB and P(k)

Julien Lesgourgues

EPFL & CERN

Benasque, 16.08.2012

4 E b

1 CMB

- CMB parameter dependence
- Impact of $N_{\rm eff}$
- Impact of M_{ν}

2 Matter power spectrum

- P(k) parameter dependance
- Impact of $N_{
 m eff}$
- Impact of M_{ν}
- Impact of mass splitting

CMB

Matter power spectrum

CMB parameter dependence Impact of N_{eff} Impact of M_{12}

- 4 同 6 4 日 6 4 日 6

• (C1) Peak location: depends on angle $\theta = d_s(\eta_{LS})/d_A(\eta_{LS})$

- (C1) Peak location: depends on angle $\theta = d_s(\eta_{LS})/d_A(\eta_{LS})$
- (C2) Ratio of odd-to-even peaks: gravity-pressure balance in fluid, ω_b/ω_γ

□ > < = > <

- (C1) Peak location: depends on angle $\theta = d_s(\eta_{LS})/d_A(\eta_{LS})$
- (C2) Ratio of odd-to-even peaks: gravity-pressure balance in fluid, ω_b/ω_γ
- (C3) Time of equality: amplitude of all peaks (damping during MD), effect enhanced for 1st peak (early ISW); depends on $(1 + z_{eq})/(1 + z_{LS})$

・ 同 ト ・ ヨ ト ・ ヨ

- (C1) Peak location: depends on angle $\theta = d_s(\eta_{LS})/d_A(\eta_{LS})$
- (C2) Ratio of odd-to-even peaks: gravity-pressure balance in fluid, ω_b/ω_γ
- (C3) Time of equality: amplitude of all peaks (damping during MD), effect enhanced for 1st peak (early ISW); depends on $(1 + z_{eq})/(1 + z_{LS})$
- (C4) Enveloppe of high-*I* peaks: diffusion scale and angle $\theta = \lambda_d(\eta_{LS})/d_A(\eta_{LS})$

- (C1) Peak location: depends on angle $\theta = d_s(\eta_{LS})/d_A(\eta_{LS})$
- (C2) Ratio of odd-to-even peaks: gravity-pressure balance in fluid, ω_b/ω_γ
- (C3) Time of equality: amplitude of all peaks (damping during MD), effect enhanced for 1st peak (early ISW); depends on $(1 + z_{eq})/(1 + z_{LS})$
- (C4) Enveloppe of high-*I* peaks: diffusion scale and angle $\theta = \lambda_d(\eta_{LS})/d_A(\eta_{LS})$
- (C5) Global amplitude: As

- (C1) Peak location: depends on angle $\theta = d_s(\eta_{LS})/d_A(\eta_{LS})$
- (C2) Ratio of odd-to-even peaks: gravity-pressure balance in fluid, ω_b/ω_γ
- **(C3)** Time of equality: amplitude of all peaks (damping during MD), effect enhanced for 1st peak (early ISW); depends on $(1 + z_{eq})/(1 + z_{LS})$
- (C4) Enveloppe of high-*I* peaks: diffusion scale and angle $\theta = \lambda_d(\eta_{LS})/d_A(\eta_{LS})$
- (C5) Global amplitude: As
- (C6) Global tilt: ns

- (C1) Peak location: depends on angle $\theta = d_s(\eta_{LS})/d_A(\eta_{LS})$
- (C2) Ratio of odd-to-even peaks: gravity-pressure balance in fluid, ω_b/ω_γ
- **(C3)** Time of equality: amplitude of all peaks (damping during MD), effect enhanced for 1st peak (early ISW); depends on $(1 + z_{eq})/(1 + z_{LS})$
- (C4) Enveloppe of high-*I* peaks: diffusion scale and angle $\theta = \lambda_d(\eta_{LS})/d_A(\eta_{LS})$
- (C5) Global amplitude: As
- (C6) Global tilt: n_s
- (C7) Slope of Sachs-Wolfe plateau (beyond tilt effect): late ISW, z_{Λ}

< ロ > < 同 > < 回 > < 回 >

- (C1) Peak location: depends on angle $\theta = d_s(\eta_{LS})/d_A(\eta_{LS})$
- (C2) Ratio of odd-to-even peaks: gravity-pressure balance in fluid, ω_b/ω_γ
- **(C3)** Time of equality: amplitude of all peaks (damping during MD), effect enhanced for 1st peak (early ISW); depends on $(1 + z_{eq})/(1 + z_{LS})$
- (C4) Enveloppe of high-*I* peaks: diffusion scale and angle $\theta = \lambda_d(\eta_{LS})/d_A(\eta_{LS})$
- (C5) Global amplitude: As
- (C6) Global tilt: n_s
- (C7) Slope of Sachs-Wolfe plateau (beyond tilt effect): late ISW, z_Λ
- (C8) Relative amplitude for $l \gg 40$ w.r.t $l \ll 40$: optical depth τ_{reio}

▲□ ► < □ ► </p>

 CMB
 CMB parameter dependence

 In terms of parameters
 m_{per}
 $\{\omega_m, \omega_b, \Omega_{\Delta}, A_s, n_s, T_{reio}\}$;
 σ_{per}

(with $h=\sqrt{\omega_m/(1-\Omega_\Lambda)}$ and $\omega_m=\omega_b+\omega_c)$

 J
 Doppler

 J
 total

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 J

 J
 <td

< ロ > < 同 > < 回 > < 回 >

- (C1) Peak location: $\theta = d_s(\eta_{LS})/d_A(\eta_{LS})$ • (C2) Ratio of odd-to-even peaks: ω_b/ω_γ • (C3) Time of equality: $z_{eq} = \omega_m/\omega_\gamma$ • (C4) Enveloppe of high-*I* peaks: $\theta = \lambda_d(\eta_{LS})/d_A(\eta_{LS})$ • (C5) Global amplitude: A_s • (C6) Global tilt: n_s • (C7) Slope of Sachs-Wolfe plateau: z_A $\omega_m, \omega_b, \Omega_A$ $\omega_m, \omega_b, \Omega_A$ $\omega_m, \omega_b, \Omega_A$
- (C8) Relative amplitude for $l \gg$ 40 w.r.t $l \ll$ 40: optical depth au_{reio}

CMB parameter dependence Impact of N_{eff} Impact of M_{ν}

Effective neutrino number

 $N_{\rm eff}\equiv$ density of degrees of freedom beyond photons that are relativistic during RD (massless or with $m\ll 1$ eV), normalized to density of one family of ordinary neutrinos. (Count account for an light relics, GW, etc.)

 $N_{\rm eff}\equiv$ density of degrees of freedom beyond photons that are relativistic during RD (massless or with $m\ll 1$ eV), normalized to density of one family of ordinary neutrinos. (Count account for an light relics, GW, etc.)

Since $\omega_r = [1 + 0.227 N_{\text{eff}}]\omega_\gamma$, obvious impact on time of equality $z_{eq} = \omega_m/\omega_r$.

 $N_{\rm eff}\equiv$ density of degrees of freedom beyond photons that are relativistic during RD (massless or with $m\ll 1$ eV), normalized to density of one family of ordinary neutrinos. (Count account for an light relics, GW, etc.)

Since $\omega_r = [1 + 0.227 N_{\text{eff}}] \omega_{\gamma}$, obvious impact on time of equality $z_{eq} = \omega_m / \omega_r$.

What is its effect on the CMB: a shift in equality, visible mainly in peaks amplitude and early ISW? A shift in the damping tail? Hou et al. 2011

 $N_{\rm eff}\equiv$ density of degrees of freedom beyond photons that are relativistic during RD (massless or with $m\ll 1$ eV), normalized to density of one family of ordinary neutrinos. (Count account for an light relics, GW, etc.)

Since $\omega_r = [1 + 0.227 N_{\text{eff}}] \omega_{\gamma}$, obvious impact on time of equality $z_{eq} = \omega_m / \omega_r$.

What is its effect on the CMB: a shift in equality, visible mainly in peaks amplitude and early ISW? A shift in the damping tail? Hou et al. 2011

Answer depends on what other parameters are kept fixed. We use the following guidelines:

 $N_{\rm eff}\equiv$ density of degrees of freedom beyond photons that are relativistic during RD (massless or with $m\ll 1$ eV), normalized to density of one family of ordinary neutrinos. (Count account for an light relics, GW, etc.)

Since $\omega_r = [1 + 0.227 N_{\text{eff}}] \omega_{\gamma}$, obvious impact on time of equality $z_{eq} = \omega_m / \omega_r$.

What is its effect on the CMB: a shift in equality, visible mainly in peaks amplitude and early ISW? A shift in the damping tail? Hou et al. 2011

Answer depends on what other parameters are kept fixed. We use the following guidelines:

 distinguish background effects (= impact of N_{eff} on (C1) - (C8)) from perturbation effects (= impact on photon perturbations of gravitational coupling with extra relativistc d.o.f).

 $N_{\rm eff}\equiv$ density of degrees of freedom beyond photons that are relativistic during RD (massless or with $m\ll 1$ eV), normalized to density of one family of ordinary neutrinos. (Count account for an light relics, GW, etc.)

Since $\omega_r = [1 + 0.227 N_{\text{eff}}] \omega_{\gamma}$, obvious impact on time of equality $z_{eq} = \omega_m / \omega_r$.

What is its effect on the CMB: a shift in equality, visible mainly in peaks amplitude and early ISW? A shift in the damping tail? Hou et al. 2011

Answer depends on what other parameters are kept fixed. We use the following guidelines:

- distinguish background effects (= impact of N_{eff} on (C1) (C8)) from perturbation effects (= impact on photon perturbations of gravitational coupling with extra relativistc d.o.f).
- for background effects, vary N_{eff} together with other parameters in order to keep (C1) - (C8) fixed, or if this is impossible, the most constrainted of these effects.

イロト イポト イヨト イヨト

 $N_{\rm eff}\equiv$ density of degrees of freedom beyond photons that are relativistic during RD (massless or with $m\ll 1$ eV), normalized to density of one family of ordinary neutrinos. (Count account for an light relics, GW, etc.)

Since $\omega_r = [1 + 0.227 N_{\rm eff}] \omega_{\gamma}$, obvious impact on time of equality $z_{eq} = \omega_m / \omega_r$.

What is its effect on the CMB: a shift in equality, visible mainly in peaks amplitude and early ISW? A shift in the damping tail? Hou et al. 2011

Answer depends on what other parameters are kept fixed. We use the following guidelines:

- distinguish background effects (= impact of N_{eff} on (C1) (C8)) from perturbation effects (= impact on photon perturbations of gravitational coupling with extra relativistc d.o.f).
- for background effects, vary N_{eff} together with other parameters in order to keep (C1) - (C8) fixed, or if this is impossible, the most constrainted of these effects.

This method allows to see if the parameter is really detectable, and to "isolate" the direct perturbation effect. Applicable to other physical ingredients...

・ロッ ・雪 ・ ・ ヨ ・ ・ ・

Obviously we should increase N_{eff} while keeping fixed $\{z_{eq}, z_{\Lambda}, \omega_b, A_s, n_s, \tau_{reio}\}$.

・ロト ・四ト ・ヨト ・ヨト

Obviously we should increase N_{eff} while keeping fixed $\{z_{eq}, z_{\Lambda}, \omega_b, A_s, n_s, \tau_{reio}\}$.

Possible if $\{\omega_r, \omega_m, \Omega_{\Lambda}h^2\}$ increase in same proportions: universe with all three components (R, M, Λ) enhanced in same way, no change in z_{eq} , z_{Λ} . Equivalent to fixing $\{\Omega_r, \Omega_m, \Omega_{\Lambda}\}$ and increasing h.

< 日 > < 同 > < 三 > < 三 >

CMB parameter dependence impact of N_{eff} impact of M_{ν}

Obviously we should increase N_{eff} while keeping fixed $\{z_{eq}, z_{\Lambda}, \omega_b, A_s, n_s, \tau_{reio}\}$.

Possible if $\{\omega_r, \omega_m, \Omega_{\Lambda}h^2\}$ increase in same proportions: universe with all three components (R, M, Λ) enhanced in same way, no change in z_{eq} , z_{Λ} . Equivalent to fixing $\{\Omega_r, \Omega_m, \Omega_{\Lambda}\}$ and increasing *h*. Then:

٩	(C1) Peak location: $\theta = d_s(\eta_{LS})/d_A(\eta_{LS})$	To be checked
٩	(C2) Ratio of odd-to-even peaks: ω_b/ω_γ	FIXED
٩	(C3) Time of equality: $z_{eq}=\omega_m/\omega_\gamma$	FIXED
٩	(C4) Enveloppe of high-I peaks: $ heta=\lambda_d(\eta_{LS})/d_A(\eta_{LS})$	To be checked
٩	(C5) Global amplitude: As	FIXED
٩	(C6) Global tilt: n _s	FIXED
۲	(C7) Slope of Sachs-Wolfe plateau: z_{Λ}	FIXED
٩	(C8) Relative amplitude for $l \gg 40$ w.r.t $l \ll 40$: optical depth	FIXED

< 日 > < 同 > < 三 > < 三 >

CMB parameter dependence Impact of N_{eff} Impact of M_{ν}

We vary $N_{\rm eff}$ with fixed z_{eq} , z_{Λ} . One can easily show that:

 $d_s(\eta_{LS}) \sim 1/h, \qquad \lambda_d(\eta_{LS})^2 \sim 1/h, \qquad d_A(\eta_{LS}) \sim 1/h.$

・ロン ・部 と ・ ヨ と ・ ヨ と …

CMB parameter dependence Impact of $N_{\rm eff}$ Impact of M_{ν}

We vary $N_{\rm eff}$ with fixed z_{eq} , z_{Λ} . One can easily show that:

$$d_s(\eta_{LS}) \sim 1/h, \qquad \lambda_d(\eta_{LS})^2 \sim 1/h, \qquad d_A(\eta_{LS}) \sim 1/h.$$

So:

- (C1) Peak location: $\theta = d_s(\eta_{LS})/d_A(\eta_{LS})$ FIXED
- (C4) Enveloppe of high-*l* peaks: $\theta = \lambda_d(\eta_{LS})/d_A(\eta_{LS})$

MODIFIED

э

< 日 > < 同 > < 三 > < 三 >

CMB parameter dependence Impact of N_{eff} Impact of M_{ν}

We vary $N_{\rm eff}$ with fixed z_{eq} , z_{Λ} . One can easily show that:

$$d_s(\eta_{LS}) \sim 1/h, \qquad \lambda_d(\eta_{LS})^2 \sim 1/h, \qquad d_A(\eta_{LS}) \sim 1/h.$$

So:

- (C1) Peak location: $\theta = d_s(\eta_{LS})/d_A(\eta_{LS})$ FIXED
- (C4) Enveloppe of high-*I* peaks: $\theta = \lambda_d(\eta_{LS})/d_A(\eta_{LS})$ MODIFIED

That's the reason for which WMAP+ACT/SPT much more sensitive to $\mathit{N}_{\rm eff}$ than just WMAP...

CMB parameter dependence Impact of N_{eff} Impact of M_{ν}

We vary $N_{\rm eff}$ with fixed z_{eq} , z_{Λ} . One can easily show that:

$$d_s(\eta_{LS}) \sim 1/h, \qquad \lambda_d(\eta_{LS})^2 \sim 1/h, \qquad d_A(\eta_{LS}) \sim 1/h.$$

So:

- (C1) Peak location: $\theta = d_s(\eta_{LS})/d_A(\eta_{LS})$ FIXED
- (C4) Enveloppe of high-*I* peaks: $\theta = \lambda_d(\eta_{LS})/d_A(\eta_{LS})$ MODIFIED

That's the reason for which WMAP+ACT/SPT much more sensitive to $N_{\rm eff}$ than just WMAP...

(C4) cannot be compensated in minimal Λ CDM (.. but it can be kept fixed if Y_{He} is decreased Bashinsky & Seljak 2004)

<ロ> <同> <同> < 同> < 同>

CMB parameter dependence Impact of N_{eff} Impact of $M_{i,i}$

<ロト <部ト < 注ト < 注ト

э

Example: $N_{\rm eff}$ increased from 0 to 3.046 with constant Y_{He} (solid) or (unrealistically) small Y_{He} (dashed)

Dashed curve: direct perturbation effects of extra d.o.f!

・ 同 ト ・ ヨ ト ・ ヨ

Dashed curve: direct perturbation effects of extra d.o.f!

• peak amplitude reduced due to gravitational coupling of photons with extra free-streaming species:

$$\Delta C_l/C_l \sim -0.072 \Delta N_{
m eff}$$
 Hu & Sujiyama 1996

▲ □ ▶ ▲ □ ▶ ▲

-

Dashed curve: direct perturbation effects of extra d.o.f!

• peak amplitude reduced due to gravitational coupling of photons with extra free-streaming species:

$$\Delta C_I/C_I \sim -0.072 \Delta N_{
m eff}$$
 Hu & Sujiyama 1996

 peak scale shifted because neutrinos propagate at c > cs: "effective sound speed" enhanced (neutrino drag effect):

$$\Delta I \sim -3\Delta N_{
m eff}$$
 Bashinsky & Seljak 2004

・ 同 ト ・ ヨ ト ・ ヨ

Conclusions:

- $N_{\rm eff}$ clearly detectable with CMB due to background and perturbation effects
- true for minimal ACDM and beyond (perturbation effects)
- accurate data at high-/ helps
- BBN prior on Y_{He} helps
- H_0 prior helps (if h fixed, cannot keep z_{eq} , z_{Λ} fixed)

< 日 > < 同 > < 三 > < 三 >

CMB parameter dependence Impact of $N_{\rm eff}$ Impact of M_{ν}

Neutrino masses

$M_{ u} = \sum_{i} m_{ u i} \ge 0.05 \text{ eV} (\text{NH}) \text{ or } 0.1 \text{ eV} (\text{IH})$

・ロト ・回ト ・ヨト ・ヨト

Neutrino masses

$M_{ u} = \sum_{i} m_{ u i} \ge 0.05 \text{ eV} (\text{NH}) \text{ or } 0.1 \text{ eV} (\text{IH})$

Usual issue: how can CMB probe neutrino masses if neutrinos become non-relativistic after decoupling ($m_{\nu} < 0.6 \text{ eV}$, $M_{\nu} < 1.8 \text{ eV}$)?

イロト イポト イヨト イヨト

Neutrino masses

$M_{ u} = \sum_{i} m_{ u i} \geq$ 0.05 eV (NH) or 0.1 eV (IH)

Usual issue: how can CMB probe neutrino masses if neutrinos become non-relativistic after decoupling ($m_{\nu} < 0.6$ eV, $M_{\nu} < 1.8$ eV)?

Even without lensing information, WMAP gives M_{ν} < 1.3 eV (95% C.L.) and Planck expected to give M_{ν} < 0.4 eV (95% C.L.)

(日) (同) (日) (日) (日)

CMB parameter dependence Impact of $N_{
m eff}$ Impact of M_{ν}

Total mass contributes to $\omega_{\nu} \simeq M_{\nu}/94$ eV and to $\omega_m = \omega_b + \omega_c + \omega_{\nu}$.

<ロ> <部> < 部> < き> < き> <</p>

æ

CMB parameter dependence Impact of $N_{\rm eff}$ Impact of M_{ν}

Total mass contributes to $\omega_{\nu} \simeq M_{\nu}/94$ eV and to $\omega_m = \omega_b + \omega_c + \omega_{\nu}$. Instead $z_{eq} = (\omega_b + \omega_c)/\omega_r$ does not depend explicitly on M_{ν} .

<ロ> <同> <同> < 同> < 同>

CMB parameter dependence Impact of N_{eff} Impact of M_{ν}

Total mass contributes to $\omega_{\nu} \simeq M_{\nu}/94$ eV and to $\omega_m = \omega_b + \omega_c + \omega_{\nu}$. Instead $z_{eq} = (\omega_b + \omega_c)/\omega_r$ does not depend explicitly on M_{ν} . If we increase M_{ν} with fixed ω_b and ω_c (and therefore increasing ω_m), we change the late-time cosmology only.

< 日 > < 同 > < 三 > < 三 >

 $\begin{array}{c} \mathsf{CMB} \\ \mathsf{Matter power spectrum} \end{array} \begin{array}{c} \mathsf{CMB parameter dependence} \\ \mathsf{Impact of } N_{\mathrm{eff}} \\ \mathsf{Impact of } M_{\mathcal{V}} \end{array}$

Total mass contributes to $\omega_{\nu} \simeq M_{\nu}/94$ eV and to $\omega_m = \omega_b + \omega_c + \omega_{\nu}$. Instead $z_{eq} = (\omega_b + \omega_c)/\omega_r$ does not depend explicitly on M_{ν} . If we increase M_{ν} with fixed ω_b and ω_c (and therefore increasing ω_m), we change the late-time cosmology only. Then:

• (C1) Peak location: $\theta = d_s(\eta_{1S})/d_A(\eta_{1S})$ MAY VARY • (C2) Ratio of odd-to-even peaks: ω_b/ω_γ FIXED • (C3) Time of equality: $z_{eq} = (\omega_b + \omega_c)/\omega_{\gamma}$ FIXED • (C4) Enveloppe of high-*l* peaks: $\theta = \lambda_d(\eta_{LS})/d_A(\eta_{LS})$ MAY VARY (C5) Global amplitude: A_s FIXED (C6) Global tilt: ns FIXED (C7) Slope of Sachs-Wolfe plateau: z_Λ MAY VARY • (C8) Relative amplitude for $l \gg 40$ w.r.t $l \ll 40$: optical depth FIXED

・ロト ・同ト ・ヨト ・ヨト

 $\begin{array}{c} \mathsf{CMB} \\ \mathsf{Matter power spectrum} \end{array} \begin{array}{c} \mathsf{CMB} \\ \mathsf{Impact of } \\ \mathsf{Neff} \\ \mathsf{Impact of } \\ \mathsf{M}_{\mathcal{V}} \end{array}$

Total mass contributes to $\omega_{\nu} \simeq M_{\nu}/94$ eV and to $\omega_m = \omega_b + \omega_c + \omega_{\nu}$. Instead $z_{eq} = (\omega_b + \omega_c)/\omega_r$ does not depend explicitly on M_{ν} . If we increase M_{ν} with fixed ω_b and ω_c (and therefore increasing ω_m), we change the late-time cosmology only. Then:

- (C1) Peak location: $\theta = d_s(\eta_{LS})/d_A(\eta_{LS})$ MAY VARY• (C2) Ratio of odd-to-even peaks: ω_b/ω_γ FIXED• (C3) Time of equality: $z_{eq} = (\omega_b + \omega_c)/\omega_\gamma$ FIXED• (C4) Enveloppe of high-I peaks: $\theta = \lambda_d(\eta_{LS})/d_A(\eta_{LS})$ MAY VARY• (C5) Global amplitude: A_s FIXED• (C6) Global tilt: n_s FIXED• (C7) Slope of Sachs-Wolfe plateau: z_A MAY VARY
- (C8) Relative amplitude for $l \gg 40$ w.r.t $l \ll 40$: optical depth FIXED

In the parameter set $\{M_{\nu}, \omega_c, \omega_b, \Omega_{\Lambda}, A_s, n_s, \tau_{reio}\}$, still have possibility to vary Ω_{Λ} in order to fix either

- $d_A(\eta_{LS})$ and (C1)+(C4),
- or z_{Λ} and (C7).

First option better motivated (cosmic variance).

・ロト ・同ト ・ヨト ・ヨト

CMB parameter dependence Impact of $N_{\rm eff}$ Impact of M_{ν}

We vary M_{ν} with fixed ω_b , ω_c , $d_A(\eta_{LS})$:

JL, Mangano, Miele, Pastor, in press

<ロ> <同> <同> < 同> < 同>

CMB parameter dependence Impact of $N_{\rm eff}$ Impact of M_{ν}

We vary M_{ν} with fixed ω_b , ω_c , $d_A(\eta_{LS})$:

JL, Mangano, Miele, Pastor, in press

Only modified late ISW effect (C7) plus direct perturbation effects of extra d.o.f. Later mainly consists in extra early ISW (20 < l < 200) due to metric variations when neutrinos become non-relativistic after decoupling. Amplitude:

 $\Delta C_l/C_l \sim [m_{\nu}/10 \text{ eV}].$

Also effects at l > 200 due to the fact that neutrino not fully relativistic prior to recombination.

Conclusions:

- M_{ν} difficult to measure: background effect (= LISW) masked by cosmic variance, and perturbation effect very small.
- extra priors (H_0 , BAO...) help: not possible to keep $z_{eq} + d_A(\eta_{LS})$ fixed... then, significant background effect... that could still be compensated in more general cosmology (spatial curvature)
- detecting mass splitting in CMB is hopeless
- Iensing extraction helps a lot

(日) (同) (三) (三)

P(k) parameter dependance Impact of $N_{\rm eff}$ Impact of M_{ν} Impact of mass splitting

Matter power spectrum

In neutrinoless Λ CDM model, linear P(k) (in $[Mpc/h]^3$ vs [h/Mpc]) controlled by 5 effects/quantitites:

▲ □ ▶ ▲ □ ▶ ▲

-

• (P1) Peak location: depends on k_{eq} in $[h/{
m Mpc}]$, i.e. on $[\Omega_m(1+z_{eq})]^{1/2}$

▲ □ ▶ ▲ □ ▶ ▲

- (P1) Peak location: depends on k_{eq} in [h/Mpc], i.e. on $[\Omega_m(1+z_{eq})]^{1/2}$
- (P2) Slope/amplitude for $k \ge k_{eq}$: baryon-to-cdm ratio ω_b/ω_c

▲ □ ▶ ▲ □ ▶ ▲

- (P1) Peak location: depends on k_{eq} in [h/Mpc], i.e. on $[\Omega_m(1+z_{eq})]^{1/2}$
- (P2) Slope/amplitude for $k \ge k_{eq}$: baryon-to-cdm ratio ω_b/ω_c
- (P3) BAO phase depends on sound horizon at baryon drag d_s(η_d), BAO amplitude on Silk damping scale λ_d(η_d)

・ 同 ト ・ ヨ ト ・ ヨ

- (P1) Peak location: depends on k_{eq} in [h/Mpc], i.e. on $[\Omega_m(1+z_{eq})]^{1/2}$
- (P2) Slope/amplitude for $k \ge k_{eq}$: baryon-to-cdm ratio ω_b/ω_c
- (P3) BAO phase depends on sound horizon at baryon drag d_s(η_d), BAO amplitude on Silk damping scale λ_d(η_d)
- (P4) Overall amplitude: depends on Ω_m and A_s

- (P1) Peak location: depends on k_{eq} in [h/Mpc], i.e. on $[\Omega_m(1+z_{eq})]^{1/2}$
- (P2) Slope/amplitude for $k \ge k_{eq}$: baryon-to-cdm ratio ω_b/ω_c
- (P3) BAO phase depends on sound horizon at baryon drag d_s(η_d), BAO amplitude on Silk damping scale λ_d(η_d)
- (P4) Overall amplitude: depends on Ω_m and A_s
- (P5) Global tilt: ns

٩	(P1) Peak location	depends o	on $k_{eq} \sim$	$[\Omega_m(1+z_{eq})]^{1/2}$	$\omega_m, \ \Omega_\Lambda$
---	--------------------	-----------	------------------	------------------------------	------------------------------

- (P2) Slope/amplitude for $k \ge k_{eq}$: baryon-to-cdm ratio ω_m, ω_b
- (P3) BAO phase $(d_s(\eta_d))$, BAO amplitude $(\lambda_d(\eta_d))$ ω_b
- (P4) Overall amplitude Ω_{Λ}, A_s
- (P5) Global tilt

ns

 $\begin{array}{l} P(k) \text{ parameter dependance} \\ \textbf{Impact of } \textit{N}_{eff} \\ \textbf{Impact of } \textit{M}_{\nu} \\ \textbf{Impact of mass splitting} \end{array}$

Impact of $N_{\rm eff}$

Like for CMB, we vary $N_{\rm eff}$ with fixed $\{z_{eq}, z_{\Lambda}, \omega_b\}$, i.e. same $\Omega_{\Lambda}, \omega_b$ and varying ω_m .

<ロ> <同> <同> < 回> < 回>

 $\begin{array}{l} P(k) \text{ parameter dependance} \\ \textbf{Impact of } N_{eff} \\ \textbf{Impact of } M_{\nu} \\ \textbf{Impact of mass splitting} \end{array}$

Impact of $N_{\rm eff}$

Like for CMB, we vary $N_{\rm eff}$ with fixed $\{z_{eq}, z_{\Lambda}, \omega_b\}$, i.e. same $\Omega_{\Lambda}, \omega_b$ and varying ω_m . Then:

• (P1) Peak location: depends on $k_{eq} \sim [\Omega_m(1 + z_{eq})]^{1/2}$ FIXED• (P2) Slope/amplitude for $k \geq k_{eq}$: baryon-to-cdm ratioMODIFIED• (P3) BAO phase and amplitude $\lambda_d(\eta_d)$ FIXED• (P4) Overall amplitudeFIXED• (P5) Global tiltFIXED

(日) (同) (三) (三)

 $\begin{array}{l} P(k) \text{ parameter dependance} \\ \textbf{Impact of } N_{eff} \\ \textbf{Impact of } M_{\nu} \\ \textbf{Impact of mass splitting} \end{array}$

Impact of $N_{\rm eff}$

Like for CMB, we vary $N_{\rm eff}$ with fixed $\{z_{eq}, z_{\Lambda}, \omega_b\}$, i.e. same $\Omega_{\Lambda}, \omega_b$ and varying ω_m . Then:

- (P1) Peak location: depends on $k_{eq} \sim [\Omega_m(1+z_{eq})]^{1/2}$ FIXED
- (P2) Slope/amplitude for $k \ge k_{eq}$: baryon-to-cdm ratio MODIFIED
- (P3) BAO phase and amplitude $\lambda_d(\eta_d)$ FIXED
- (P4) Overall amplitude FIXED
- (P5) Global tilt FIXED

We could have kept (P2) fixed by increasing ω_b proportionally to ω_c ... then (P3) modified (BAO).

< ロ > < 同 > < 三 > < 三 > 、

 $\begin{array}{l} P(k) \text{ parameter dependance} \\ \textbf{Impact of } N_{eff} \\ \textbf{Impact of } M_{\nu} \\ \textbf{Impact of mass splitting} \end{array}$

FIXED

3

Impact of $N_{\rm eff}$

Like for CMB, we vary $N_{\rm eff}$ with fixed $\{z_{eq}, z_{\Lambda}, \omega_b\}$, i.e. same $\Omega_{\Lambda}, \omega_b$ and varying ω_m . Then:

- (P1) Peak location: depends on $k_{eq} \sim [\Omega_m(1+z_{eq})]^{1/2}$ FIXED
- (P2) Slope/amplitude for $k \ge k_{eq}$: baryon-to-cdm ratio MODIFIED
- (P3) BAO phase and amplitude $\lambda_d(\eta_d)$ FIXED
- (P4) Overall amplitude FIXED
- (P5) Global tilt

We could have kept (P2) fixed by increasing ω_b proportionally to ω_c ... then (P3) modified (BAO).

In both cases, background effect ((P2) or (P3)) adds up with direct perturbation

effect: we expect the amplitude/phase shift observed in CMB to show up in BAOs.

 $\begin{array}{c} P(k) \text{ parameter dependance} \\ \text{CMB} & \text{Impact of } N_{eff} \\ \text{Matter power spectrum} & \text{Impact of } M_{\nu} \\ \text{Impact of } mass splitting \end{array}$

We increase N_{eff} with fixed z_{eq} , Ω_{Λ} , and either fixed ω_b/ω_c or ω_b :

▲ □ ▶ ▲ □ ▶ ▲

-

 $\begin{array}{c} P(k) \text{ parameter dependance} \\ \hline \\ \text{Matter power spectrum} \\ \hline \\ \text{Impact of } M_{\nu} \\ \hline \\ \text{Impact of } M_{\nu} \\ \hline \\ \text{Impact of mass splitting} \end{array}$

We increase N_{eff} with fixed z_{eq} , Ω_{Λ} , and either fixed ω_b/ω_c or ω_b :

Background effect = either change of slope for $k \ge k_{eq}$ or in BAO phase. Always an additional BAO phase shift from perturbation effect (neutrino drag).

< 🗇 > < 🖃 >

 $\begin{array}{l} P(k) \text{ parameter dependance} \\ \textbf{Impact of } \textit{N}_{eff} \\ \textbf{Impact of } \textit{M}_{\nu} \\ \textbf{Impact of mass splitting} \end{array}$

Conclusions:

- matter power spectrum = complementary probe of N_{eff} .
- main signatures in slope (for fixed n_s) and in BAO phase.
- currently: $\sigma(N_{\rm eff}) \sim 0.7$, $1.0\sigma 1.9\sigma$ excess. Planck with lensing extraction: $\sigma(N_{\rm eff}) \sim 0.3$, Planck + Euclid: $\sigma(N_{\rm eff}) \sim 0.1$. No prospects to test with precision standard value 3.046

(日) (同) (三) (三)

 $\begin{array}{c} P(k) \text{ parameter depend} \\ \text{CMB} \\ \text{Matter power spectrum} \\ \textbf{Impact of } M_{\nu} \\ \text{Impact of } M_{\nu} \end{array}$

Impact of M_{ν}

Famous neutrino free-streaming effect: on small scales, not only neutrinos do not cluster, but also the growth of CDM perturbations is modified (scale-dependent growth factor):

$$\delta_c \propto a^{1-rac{3}{5}f_
u}, \qquad f_
u \equiv \omega_
u/\omega_m.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\begin{array}{c} P(k) \text{ parameter dep} \\ \text{CMB} \\ \text{Matter power spectrum} \\ \text{Impact of } M_{\nu} \\ \text{Impact of } M_{\nu} \end{array}$

Impact of M_{ν}

Famous neutrino free-streaming effect: on small scales, not only neutrinos do not cluster, but also the growth of CDM perturbations is modified (scale-dependent growth factor):

$$\delta_c \propto a^{1-rac{3}{5}f_
u}, \qquad f_
u \equiv \omega_
u/\omega_m.$$

Best seen when most background effects are cancelled: below we fix ω_m , $\Omega_{\Lambda} \omega_b/\omega_c$:

JL, Mangano, Miele, Pastor, in press

Julien Lesgourgues neutrino abundance & mass, CMB & P(k)

 $\begin{array}{c} P(k) \text{ parameter dependanc} \\ \text{CMB} \\ \text{Matter power spectrum} \\ \text{Impact of } M_{\nu} \\ \text{Impact of mass splitting} \end{array}$

Effect is strongly redshift dependent:

<ロ> <同> <同> < 回> < 回>

 $\begin{array}{c} P(k) \text{ parameter dependance} \\ \text{CMB} \\ \text{Matter power spectrum} \\ \text{Impact of } M_{\nu} \\ \text{Impact of mass splitting} \\ \end{array}$

Non-linear corrections well understood on mildly non-linear scales:

Bird, Haehnelt, Viel 2011; see also Brandbyge et al.2010

▲御▶ ▲ 臣▶ ▲ 臣▶

- P(k) very sensitive to M_ν, ΔP/P ~ −8 (10)f_ν ~ [M_ν/1 eV]: at least 5% for normal hierarchy scenario, 10% for inverted hierarchy scenario.
- scale-dependent growth factor g(z, k): data at different redshift helps; not degenerate with usual extensions of ΛCDM (curvature, running...)
- $\sigma(M_{\nu}) \sim 0.1 \text{ eV}$ for Planck with lensing extraction or with BOSS, 0.06 with Planck+DES, 0.03 with Planck + Euclid CS, 0.015 with Planck + Euclid $P(k) \dots$

(日) (同) (三) (三)

 $\begin{array}{l} P(k) \text{ parameter dependance} \\ \text{Impact of } N_{\rm eff} \\ \text{Impact of } M_{\nu} \\ \text{Impact of mass splitting} \end{array}$

Impact of mass splitting

- times of non-relativistic transitions depend on individual masses
- hence 3 free-streaming scales depending on each mass
- total small-scale supression due to reduced cdm growth rate between non-relativistic transition and now: small dependendance on individual mass.

