Benasque - 7 August 2012

EUCLID (a few whys and hows)

R. Scaramella (on behalf of E. Consortium)

(Euclid Consortium, old timer, Mission Survey Scientist, member of the EC Board and EST)

Lots of figures and material courtesy of other EC members (Amendola, Amiaux, Cropper, Guzzo, Nichol ... many people!)

Red Book released in July 2011 (ESA web pages)

• Gigastructures...

FIGURE 2-5 The cosmic timeline, from inflation to the first stars and galaxies to the current universe. The change in the vertical width represents the change in the rate of the expansion of the universe, from exponential expansion during the epoch of inflation followed by long period of a slowing expansion during which the galaxies and large scale structures formed through the force of gravity, to a recent acceleration of the expansion over the last roughly billion years due to the mysterious dark energy. Credit: NASA Wilkinson Microwave Anisotropy Probe Science Team.

\bullet Observed with a mini structure: mirror ~1 m Ø

Giants need dwarfs too

Open Questions in Cosmology

- Nature of the Dark Energy
- Nature of the Dark Matter
- Initial conditions (Inflation Physics)
- Modifications to Gravity
- Formation and Evolution of Galaxies

Large ignorance on > 95% of Universe content !!

"precise" ignorance

Current status of Dark EnergyDark Energy:• Affects cosmic geometry and structure growth• Parameterized by equation of state parameter:w(z)=p/Q, constant w=-1 for cosmological constantw(z)=p/Q, constant w=-1 for cosmological constantCurrent constraints:10% error on constant wFor "definite" answers on DE: need to reach a precision of 1% on (varying) w

and 10% on $w_a = dw/da \rightarrow Objective for Euclid alone (FoM ~4-500)$

Recall a few basics

$$H^{2}(a) \equiv \left(\frac{\dot{a}}{a}\right)^{2} = H_{0}^{2} \left[\Omega_{m}a^{-3} + \Omega_{r}a^{-4} + \Omega_{k}a^{-2} + \Omega_{X}a^{-3(1+w)}\right]^{2}$$

Evolution governed by components: $H(z) \Leftrightarrow \Omega_X, w$

$$H^{2}(a) = H_{0}^{2} \left[\Omega_{R} a^{-4} + \Omega_{M} a^{-3} + \Omega_{k} a^{-2} + \Omega_{DE} \exp \left\{ 3 \int_{a}^{1} \frac{da'}{a'} \left[1 + w(a') \right] \right\} \right]$$

Ellipses: uncertainty in parameters via Fisher matrix. An useful <u>approximation</u> (curse of dimensionality; also different definitions). <u>Priors</u> Usually use Figure of Merit= 1/Area $FoM= 1/(\Delta w_0 \ge \Delta w_a)$ a=(1+z)⁻¹ expansion factor δ = density fluctuation P(k) = power spectrum of $\delta(\mathbf{x}, z)$ w = p/Q, γ =growth index w(z)=w₀+w_a (1-a) $f_{GR}(z) \equiv \frac{d \ln G_{GR}}{d \ln a} \approx [\Omega_m(z)]^{\gamma}$ A: w₀= -1, w_a = 0, $\gamma \sim 0.55$

 Why
 Dark Energy & Dark Matter (Cosmology); Legacy
 Space imaging (morphology & NIR) + Spectra: Grav. Lensing & BAO

3. When 3. 2020-2025+

2006 ESA Cosmic Vision Proposals DUNE: all-sky imaging for lensing SPACE: all-sky spectra

Joined in a single mission: **Euclid**

EUCLID

Test Space-Time Geometry & Growth of Structure

wo phase A instrument consortia:

C for imaging (P.I. A. Refregier) and wide visible red band (R+I+Z, 0.55-0.92µ) resolution of 0.18 arcsec NIR bands (Y, J, H+, spanning 1.0-2.0µ) with a resolution of 0.3 arcsec

ENIS for spectroscopy (P.I. A. Cimatti) 1.0-2.0 micron in slitless mode at a spectral resolution R ~ 500

In early 2010 merged in a single consortium EC [most of EU nations, spokesperson A. Refegier \Rightarrow Y. Mellier]

New Worlds, New Horizons in Astronomy and Astrophysics (Decadal Survey 2010)

Ground Projects – Large – in Rank Order

Large Synoptic Survey Telescope (LSST)

LSST is a multipurpose observatory that will explore the nature of dark energy and the behavior of dark matter and will robustly explore aspects of the time-variable universe that will certainly lead to new discoveries. LSST addresses a large number of the science questions highlighted in this report. An 8.4-meter optical telescope to be sited in Chile, LSST will image the entire available sky every 3 nights. TABLE ES.3 Ground: Recommended Activities—Large Scale (Priority Order)

NATIONAL	RESEARCH COUNCIL	Technical	Appraisal of Costs Through Construction ^a (U.S. Federal Share	Appraisal of Annual Operations Costs ^d (U.S. Federal	Page
Recommendation ^b	Science	Risk ^c	2012-2021)	Share)	Reference
1. LSST - Science late 2010s - NSF/DOE	Dark energy, dark matter, time-variable phenomena, supernovas, Kuiper belt	Medium low	\$465M (\$421M)	\$42M (\$28M)	7-29
	Space Pr	ojects – La	rge – in Rank Order		

Wide Field Infrared Survey Telescope (WFIRST)

A 1.5-meter wide-field-of-view near-infrared-imaging and low-resolution-spectroscopy telescope, WFIRST will settle fundamental questions about the nature of dark energy, the discovery of which was one of the greatest achievements of U.S. telescopes in recent years. It will employ three distinct techniques—measurements of weak gravitational lensing, supernova distances, and baryon acoustic oscillations—to determine the effect of dark energy on the evolution of the universe. An equally

TABLE ES.5 Space: Recommended Activities—Large-Scale (Priority Order)

				Appraisal	of Costs	-
Recommendation	Launch Date ^b	Science	Technical Risk ^c	Total (U.S. share)	U.S. share 2012-2021	Page Reference
1. WFIRST - NASA/DOE collaboration	2020	Dark energy, exoplanets, and infrared survey- science	Medium low	\$1.6B	\$1.6B	7-17

DE as TOP priority both for Ground and Space also across the Atlantic

	n n	Aain Scientifi	c Objectives				
Understand the nature of Dark Energy and Dark Matter by:					All data you need to know		
• Reach a dark energy $FoM > 400$ using only weak lensing and galaxy clustering; this roughly corresponds to							
1 sigma errors on w_p and w_a of 0.02 and 0.1, respectively.						(Red Book)	
• Measure γ , the exponent of the growth factor, with a 1 sigma precision of < 0.02, sufficient to distinguish						(Ited Book)	
General Rel	lativity and a wide range of	of modified-gi	ravity theories				
• Test the Co	old Dark Matter paradig	m for hierac	hical structure for	ormation, and	i measu	re the sum of the	
neutrino ma	isses with a 1 sigma precis	sion better tha	n 0.03eV.				
Constrain n	$n_{\rm s}$, the spectral index of p	primordial pov	ver spectrum, to	percent accu	racy wh	ien combined with	
Planck, and	to probe inflation model	s by measurin	g the non-Gaussi	anity of initia	al condit	ions parameterised	
by $f_{\rm NL}$ to a	sigma precision of ~ 2 .	<u></u>	51/0				-
	Area (dag2)	SURV	EYS	Description			-
Wide Survey	Alea (deg2)		Stan and stars	Description	1 pointing	s ner sten	
whice Survey	20,000 (required)		Step and state v	with 4 differ j	pointing	s per step.	Wide Area 1, 104 and and
Deen Survey	20,000 (goal)		In at lag	st 2 patches o	f > 10 d	eg ²	\checkmark \lor
Deep Survey	40		2 magnitud	les deeper that	n wide s	survey	
		DAVIC		ies deeper tha	II white 5	survey	
Telescope		1.2 m Korse	ch 3 mirror anast	igmat_f=24.5	m		Alta Ptala
Instrument	VIS		in, 5 millior unust	NISP			
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$		0.7	63×0 722 deg	²		
Canability	Visual Imaging	NIF	R Imaging Photon	netrv	, NI	IR Spectroscopy	-
cupuomity	, isuar magnig		e muging i noton	licity	1.1	in speenoseopy	
Wavelength range	550-900 nm	Y (920-	J (1146-1372	Н (1372-	1100-	-2000 nm	
		1146nm).	nm)	2000nm)			
Sensitivity	24.5 mag	24 mag	24 mag	24 mag	3 10-1	¹⁶ erg cm-2 s-1	. optituding
5	10σ extended source	5σ point	5σ point	5σ point	3.5σ	unresolved line	A NIIZ mhatava
		source	source	source	flux		▼ NIK DNOTOM
Detector	36 arrays			16 arrays			A NIZ alitlaga
Technology	4k×4k CCD		2k×2k NIR set	nsitive HgCd	Te detec	ctors	VIN SILLESS
Pixel Size	0.1 arcsec		0.3 arcsec		0.3 ar	rcsec	
Spectral resolution				ass. and the	R=25	50	
		SPACEC	RAFT				
Launcher	Soyuz ST-2.1 B from	Kourou					
Orbit	Large Sun-Earth Lagra	ange point 2 (SEL2), free inser	tion orbit			
Pointing	25 mas relative pointin	ng error over o	one dither duratio	n			Two instruments.
	30 arcsec absolute poi	nting error					
Observation mode	Step and stare, 4 dithe	r frames per f	ield, VIS and NIS	SP common F	oV = 0.5	54 deg ²	
Lifetime	/ years						VIS: ontical imager &
Operations	4 hours per day con	tact, more th	an one groundst	tation to cop	be with	seasonal visibility	vis. optical imagel a
0:	variations;	6050 (31.4/1 1 1.1	· 1/1 1/2		4 11 HCA	
Communications	maximum science data	a rate of 850 C	Joit/day downlink	k in K band (2	26GHZ),	steerable HGA	NISP NIR imager $+$ grisms
	B	sudgets and P	errormance		N7 :		
in desatures			Mass (kg)		Nomin	iai Power (W)	-
Industry		IAS	Astriu	im IA	.5	Astrium	-
Payload Module		897	696	410	<u> </u>	496	
Service Module		/86	835	64	/	692	-
A domton many II	and DDCU 1	148	232	15		100	-
Adapter mass/ Harne	ess and PDCU losses pow	er /0	90	65	(0	108	-
l otal (including ma	argin)		2160	130	60	1690	R. Scaramella Benasque 7-8-12

further disentagle

Figure C.1: Effect of dark energy on the evolution of the Universe. Left: Fraction of the density of the Universe in the form of dark energy as a function of redshift z., for a model with a cosmological constant (w=-1, black solid line), dark energy with a different equation of state (w=-0.7, red dotted line), and a modified gravity model (blue dashed line). In all cases, dark energy becomes dominant in the low redshift Universe era probed by DUNE, while the early Universe is probed by the CMB. Right: Growth factor of cosmic structures for the same three models. Only by measuring the geometry (left panel) and the growth of structure (right panel) at low redshifts can a modification of dark energy be distinguished from that of gravity. Weak lensing measures both effects.

Wanf	Observational Input	Probe	Description
NEEDI	Weak Lensing Survey	Weak Lensing (WL)	Measure the expansion history and the growth factor of structure
several	Galaxy Redshift Survey: Analysis of <i>P(k)</i>	Baryonic Acoustic Oscillations (BAO)	Measure the expansion history through $D_A(z)$ and $H(z)$ using the "wiggles-only".
probes		Redshift-Space distortions	Determine the growth <i>rate</i> of cosmic structures from the redshift distortions due to peculiar motions
synergie		Galaxy Clustering	Measures the expansion history and the growth factor using all available information in the amplitude and shape of P(k)
and	Weak Lensing plus Galaxy redshift survey combined with cluster mass surveys	Number density of clusters	Measures a combination of growth factor (from number of clusters) and expansion history (from volume evolution).
AGIIGUIS	Weak lensing survey plus galaxy redshift survey combined with CMB surveys	Integrated Sachs Wolfe effect	Measures the expansion history and the growth

Want to measure expansion factor H(z) - *geometry* - and growth of density perturbations - *dynamics* -

Wide survey: >15,000 sq. deg (visible: 24.5th ABmag 10 σ extended; NIR: 24th ABmag 5 σ ; spectra: H α line flux > 4×10⁻¹⁶ erg s⁻¹ cm⁻², rate ~35%)

Deep Survey: ~40 sq. deg ~ 2 mags deeper (~40 visits)

g a C

Version: 1.7

EC organization

ESA Euclid Science Team [EST]

EC is responsible of instruments and parts of Ground Segment (telescope, MOC, SOC and archive are provided and managed by ESA)

Many European Countries, ~900 aficionados, ~450+ M€ (ESA) ~100 M€ Payload ~100 M€ Ground

SGS: overall view

According to people, Euclid Surveys need to have just "*a few*" features.....

Some Inputs/Constraints

1. FoV, exposure times, number of ditherings

2. Possible orbits: Solar Aspect Angle max Δ range & area visibility, overheads & overall efficiency

3. max # of slews (-if- limited amount of gas for manouvers), mission lifetime (extensions are extremely welcome for general astronomy)

4. Targeted Calibrations: VIS, NIP, NIS (angles!)

Some Desires

1. Have a southern deep field with (max) observability from ground large facilities (ESO, ALMA, LSST, EELT, SKA,CTA etc). It is highly desirable to take advantage of existing data

2. Adequate time sampling for SN

3. Additional Surveys (e.g. MW, microlensing)

EUCLID Mission

- Launcher: Soyuz ST2-1B from Kourou
- Direct injection into tranfer orbit
 - Transfer time: 30 days
 - Transfer orbit inclination: 5.3 deg

_ _ _ _ _

- Launch vehicle capacity:
 - 2160 kg (incl. adapter)
 - 3.86 m diameter fairing
- Launch \approx 2020

esa

• Mission duration 6 years

For stability

need to always

ed

part

Looks like CMB satellites but with step & stare

region visibility twice/yr at ecliptic plane, max at ecliptic poles (spin 2)

The core: ~0.5 sq/degs, VIS & NIR Focal Planes, lots of pixels !!!

The geometrical Field of View is the sky area limited by the contour of the focal plane array of a given instrument (VIS or NISP) projected onto the sky. The contour is defined by the first pixel line or columns of the detectors on the edge of the FPA as indicated on the next figure.

• JOINT_FOV_y= 0.709°

The x and y field orientations are defined in the figure 6-2.

4 dithers ~1 full Field -0.5 sq deg- / 1.25 hr (\approx 10 sq deg/day)

Observing sequence for each field + move to next one \sim 4500 s coverage Slew Frame 04 Frame 01 Frame 02 Frame 03 50% 3 exp 50% 4 exp 75 s 75 s 75 s 350 s Observing VIS 60% 40% sequence VIS Shutte Shutter 10 s 565 s 10 s for each NISP frame NISP FWA FWA FWA Stab FWA Stab Stab Н 565 s 10 s 10 s 10 s 121 s 10 s 10 s 116 s 10 s 10 s 81 s $\sim 1000 \, s$

Figure 5-4: Nominal Field Observation Sequence.

NIR: first spectroscopy contemporarily to VIS, then imaging (filter wheels motion perturbs VIS)

Slitless: Blue, then Red grism, then again at 90 degs

Figure 7: The solar spectrum, adjusted to match the observed zodiacal background (solid green). Simplified characterization - a 5800° K blackbody scaled by $\lambda^{0.36}$ (dotted black). Broken power-law parameterization (dashed black).

Figure 1. Upper panel. The spectrum of the zodiacal background light at the NEP compared to broad-band observations from the ground and HST observations. The circles are data at 0.450, 0.606 and 0.814 µm, respectively from the HDF; the square is Leinert et al. (1998) measure at 0.5 µm, and the triangles are measures from COBE/DIRBE at 1.25 and 2.2 µm. **Lower panel.** The comparison between the intensity of the three adopted normalizations of the zodiacal backgroud light. The lowest normalization is the one relative to the NEP, and it is shown together with the broad-band data points discussed above.

NISP calibrators above, for WL need dense star regions (in the galaxy plane)

Example (ecliptic coords)

Wide Survey Ist year

Zodiacal light max in the ecliptic plane

Second Year Period / Northern Cap

Deep Field(s): calibration reqs (being revised) + science

Need high ecliptic latitude for observability (want low extinction too)

Figure 5.6: Left panel: Northern Deep Field projected on a sky extinction map. Right panel: Southern Deep Field

Expansion and Growth Histories through Galaxy Clustering

Figure 2.10: a. (Left panel) The galaxy distribution in the largest surveys of the local Universe, compared to simulated distributions from the Millennium Run (Springel et al. 2005); b. (Right panel) The two-point correlation function of SDSS "luminous red galaxies", in which the BAO peak at ~105 h⁻¹ Mpc has been clearly detected (Eisenstein et al. 2005).

Clustering reveals features in the power spectrum of density perturbations

Figure 1. Predicted mean number density of galaxies in each redshift bin centred in z, expected from the baseline Euclid wide spectroscopic survey, given the instrumental and survey configurations and the estimated efficiency.

Figure 3. Relative error on $f \sigma_8$ of Euclid (dark-green circles, light-green circles for the pessimistic case of half the galaxy number density), BOSS (dark-red squares), BigBOSS ELGs (blue triangles) and LRGs (orange diamonds).

Elisabetta Majerotto et al. 2012

For clustering need spectroscopic redshifts (slitless is not easy)

λ/Δλ=300 1-2 μm FoV=0.5 deg²

- Star-forming galaxies
- 0.9<z<2 (Hα)
- F_{line} > 4x10⁻¹⁶ erg/s/cm² (H<19.5)
- $\sigma_z \le 0.00 | (|+z)$
- Redshift success rate ≥ 50%
- N(gal) $\approx 5 \times 10^7$
- Sky coverage >15,000 deg²
- Mission duration \geq 6 years

slitless main problems: high(er) background & spectra overlaps

Expansion and Growth Histories through Gravitational Lensing

	Weak lensing	Flexion	Strong lensing	1
		۱		
Į	Large-scale structure	Substructure, outskirts of halos	Cluster and galaxy cores	-

Figure 2.8: a. (Left) Illustrations of the effect of a lensing mass on a circularly symmetric image. Weak lensing elliptically distorts the image, flexion provides an arc-ness and strong lensing creates large arcs

10-3

 ℓ^{+-1}

10-6

10

A370 ACS

will loose a factor of 2 in resolution, but get all sky!

Figure 5. Mass map contours in units of $\kappa_{\infty} = 1/3$ laid over the $3/2 \times 3/3$ STC previous figure. Pink squares indicate the 135 multiple image positions all perfectly reproduced by our model, and the white line indicates the convex hull. Outside this region, our solution should be disregarded. This solution is not unique but was the "most physical" we found. (A color version of this figure is available in the online journal.)

R. Scaramella Benasque 7-8-11 37

mass and shear distribution

Weak Lensing Tomography Slices in z Euclid correlated image distortions on sky produce WL power spectrum $C_1(\theta,z)$ \Rightarrow

Lensing signal $C_{i}(\theta, z)$ depends on:

- shape of total matter density fluctuation spectrum
- angular diameter distance in lensing equation for lensing amplitude
- angular diameter distance for angular scale of density spectrum

Ground based lensing is limited by systematics

Figure 2.18: a. (Left) The expected number counts of galaxies useful for lensing as a function of exposure time. The solid line is made using a simple cut on SExtractor detection with S/N>10 and FHWM[gal]>1.25FWHM[PSF], the dashed line is from the shape measurement pipelines that sum the lensing weight assigned to each galaxy, with a cut in ellipticity error of 0.1. We see that we are able to reach our requirements of 30-40 gal/amin². b. (Right) Shows the redshift measurement for PanSTARRS with and without the Euclid NIR bands (c.f. Abdalla et al 2007). We find that with DES, PanSTARRS-2 and a fortiori PanSTARRS-4 and LSST we will be able to meet out requirements of $\delta z = 0.05(1+z)$.

Figure 2.17: Advantages of space based observations in order to reach Euclid's cosmological objectives. The total error on the equation of state decreases statistically as the area of a survey is increased. However systematic effects limit the achievable dark energy constraint. For Euclid to achieve 2% on the dark energy equation of state requires an area of 20,000 square degrees and shape systematic levels with a variance of 10^{-7} (Cf. Amara & Réfrégier 2008). Such a systematic precision can only be achieved with the stability and accuracy of space-based observations.

> For photo-z need optical colors from ground based surveys (more systematics)

NIR <u>is mandatory</u> for accurate photoz for 1<z<3

+z

R. Scaramella Benasque 7-8-11

39

Figure 2.14: a. (left) The growth rate of matter perturbations as a function of redshift. Data points and errors are from a simulation of the spectroscopic redshift survey. The assumed ACDM model, coupled dark matter/dark energy modes and DGP are also shown. b. (right): The predicted cosmic shear angular power spectrum at z=0.5 and z=1 for a number of cosmological models

Can discriminate cosmology

[Dark Energy, Dark matter, non std GR]

c Objectives 0.40 An alternative explanation for the appelerations of the Universe is a deviation from scales. These models also lead to predictionskite therew and woodified Grav igtaiamond way provide the combined predicted constraints for a Euclid we retrom dank lenongdotta grets by dhein the con the con greestrectiones Ish novonthe fato why aller stracture, For the anti- and lensing completion weith hus elense he jansen med ellipse is the conshined of standard the south southes it is the participation of the souther of the participation of aren sistnænder bet kinder en line sunder her tiller t rainstingthshandertheinter, mundber of mailing endified and the marials it of starmalanthe av n breft $R = g^{\mu\nu}R_{\mu\nu}$, modelnist interformation activity of the time to a physical particulation for the physical cafes. $s_{[g]} = \int \frac{1}{2\kappa} R\sqrt{-g} d^4x$ of the rested and with the weight of the state of the an Figure $S[g] = \int \frac{1}{2\kappa} f(R) \sqrt{-g} d^4x$ os ion the story to free to encrypt, power bar ions, if the gravity provides the story of the story o obe darda surery group dels high baic e flis to mothe by other idis to fristrup the fight space onstralintion ouf that a strubit srd (growshup in grubte bigs, evolution bis a kinge vy in out the system armasurements wit bighetshifter mothets infi the galaxy best stynfight Stankaget etwy orfite navielid constituise appies waleaxy es presentangle and the best of the best of the particular states of the second of th istingation beradenifta (datapoints fand drive). gTavias sundel A.C.D. and the statistic the way rang coupling denki matter and dark a nevery and that flat DGP modelarie and dude that

, mante a sub-sub-stience untersure d'has Esseliet as a state disting a signification of the sure of the sure

1.0

0.8

Need to break degeneracy

The most general (linear, scalar) metric at first-order

Full metric reconstruction at first order requires 3 functions

 $H(z) \quad \Phi(k,z) \quad \Psi(k,z)$

Φ

$$Y_{\mu\nu} = X_{\mu\nu} - G_{\mu\nu}$$

$$G_{\mu\nu} = -8\pi G T_{\mu\nu} - Y_{\mu\nu}$$

Modified Gravity at linear level

• standard gravity	$1 \mathcal{Q}(k,a) \neq 1 \qquad 100$ $\eta(\mathbf{k},a) = 0$	
 scalar-tensor models 	$\frac{1}{1} \frac{Q(a)}{3} = \frac{\frac{Q^{*}}{F \oplus Q_{av,0}}}{\frac{2(F + F'^{2})}{2F + 3F'^{2}}} \frac{1}{100}$ $\eta^{Z}(a) = \frac{F'^{2}}{F + F'^{2}}$	Boisseau et al. 2000 Acquaviva et al. 2004 Schimd et al. 2004 L.A., Kunz &Sapone 2007
• f(R)	$Q(a) = \frac{G^*}{FG_{cav,0}} \frac{1 + 4m\frac{k^2}{a^2R}}{1 + 3m\frac{k^2}{a^2R}}, \eta(a) = \frac{m\frac{k^2}{a^2R}}{1 + 2m\frac{k^2}{a^2R}}$	Bean et al. 2006 Hu et al. 2006 Tsujikawa 2007
• DGP	$Q(a) = 1 - \frac{1}{3\beta}; \beta = 1 + 2Hr_c w_{DE}$ $\eta(a) = \frac{2}{3\beta - 1}$	Lue et al. 2004; Koyama et al. 2006
• coupled Gauss-Bonnet	$Q(a) = \dots$ $\eta(a) = \dots$	see L. A., C. Charmousis, S. Davis 2006

		0				1	
	Modified Gravity	Dark Matter	Initial Conditions		Dark Energy		$FoM = 1/(\Delta w_p \times \Delta w_a)$
Parameter	γ	m _v /eV	f _{NL}	W _p	W _a	FoM	10
Euclid Primary	0.01	0.027	5.5	0.015	0.150	430	¹⁰ IMPROVE ~ × 10 ON W
Euclid All	0.009	0.02	2	0.013	0.048	1540	⁸ × 20 οn γ
Euclid +Planck	0.007	0.019	2	0.007	0.035	4020	600 Dig
Current	0.2	0.58	100	0.1	1.5	~10	400
Improv. Factor	30	30	50	>10	>50	>300	200-

Euclid will challenge all sectors model:

Dark Energy: *W_p* and *W_a* with respectively (no prior)

Dark Matter: test of CDM paradigm, precision of 0.04eV on sum of neutrino masses (with Planck)

Initial Conditions: constrain shape of primordial power spectrum, primordial non-gaussianity

Gravity: test GR by reaching a precision of 2% on the growth exponent γ ($d \ln \delta_m / d \ln a \propto \Omega_m^\gamma$)

Uncover new physics and map LSS at 0<z<2: Low redshift counterpart to CMB surveys

3

1

0

(will use Planck)

Figure 12.1: Left Panel: Prediction of the ISW cross-correlation signal for different values of the dark energy density ($\Omega_{DE} = 0.10$, green line; $\Omega_{DE} = 0.20$, red line; $\Omega_{DE} = 0.30$, blue line) for universes with flat geometry (solid lines) and universes with open geometry and no dark energy. The ISW signal for universes with the same matter density is larger in open universes than in flat universes. The signal is calculated for a Euclid-like photometric survey. Right panel: The ISW cross-correlation signal for different values of the growth parameter ($\gamma = 0.44$, greened dash-dotted line; $\gamma = 0.55$, blue dashed line; $\gamma = 0.68$, e.g. a DGP model, red short dashed Both figures are taken from Rassat (2007).

Physics and cosmology from SN

Figure 16.2: Number of SNe of various types that are expected to be detected by Euclid in the J band, as a function of redshift. Estimates for SNe of type Ia (dark blue shaded region), Ibc, IIn and IIp were provided by A. Goobar based on assumptions in Goobar *et al.* (2008), using SNe Ia rates from Dahlen *et al.* (2004) and assuming a 5 year survey that monitors a patch of 10sq deg at any time. These histograms represent the N(z) for SNe with sufficient sampling to measure their lightcurve shapes (i.e. reaching 1 magnitude fainter than the peak brightness). The light-blue shaded region shows an independent estimate of the total number of SNe Ia detections including those only detected at peak luminosity, i.e. without full lightcurve measurements.

Counts & <u>mass</u> <u>function (calibrate!!)</u>

NIR photom (24.5), WL, (vel disp.) expect N ~ few x 10^5

Clusters of galaxies: interesting and <u>powerful</u>

Strong lensing

Mass profile in inner regions; frequency of arcs

High redshift (z~1) cluster as seen from Euclid (Meneghetti et al.)

R. Scaramella Benasque 7-8-12 47

Unique legacy survey: 2 billion galaxies imaged in optical/NIR to mag >24 Million NIR galaxy spectra, full extragalactic sky coverage, Galactic sources Unique datase for various fields in astronomy: galaxy evolution, search for high-z objects, clusters, strong lensing, brown dwarfs, exo-planets, etc Synergies with other facilities: JWST, Planck, Erosita, GAIA, DES, Pan-STARSS, LSST, E-ELT etc (e.g. to do NIR from the ground would take several × 10³ yr) All data publicly available through a legacy archive

Figure 3.5: The depth of current and on-going NIR surveys (red points), and the optical KIDS survey (blue triangles compared to the Euclid deep surveys in visible and NIR wavelengths (blue squares).

Competition / Complementarity

- Ground-based lensing surveys now (DES, PanSTARRS, KIDS/VIKING, HSC)
 - Hard to get PSF stability and IR imaging data to gain higher-z photo-z's
 - Patchy overlap with spectroscopic survey (photo-z's, testing gravity)
 - Help develop techniques further and needed by Euclid
- Ground-based spectroscopic surveys (BOSS, BigBOSS, DESpec, + many more!)
 - Only BOSS underway (z<0.7 and passive galaxies) %-level distances from BAO
 - Other surveys may not be on-sky before Euclid!
 - Hard to compete on volume & redshift coverage
 - Potentially lacking high quality photometric input catalogues
 - Inefficiencies because of weather and over-crowding

• WFIRST & LSST

- WFIRST likely launch date is next decade
- Expensive (\$1.6 billion with JWST beforehand)
- Much competition for probes
- LSST will be an awesome complement to Euclid (but only one hemisphere)

Euclid remains the right mission at the right time for cosmology Also get all that legacy science

≝ 300È

Best science (cf Decadal)

★ Enormous Legacy ★ Tough but feasible

Stay tuned!

