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Summary: we have developed a new Bayesian method to better 
understand the possible dynamics of dark energy.  Applying it to 
the most recent data sets suggests possible evolution in the 
equation of state, but the evidence is still marginal.  




Growing dark energy evidence  


We know the expansion of the Universe is accelerating from a 
wide variety of probes:


Ø  Type 1A Supernovae as standard candles 


Ø  Angular size of CMB features 


Ø  Baryon acoustic feature in the large scale galaxy distribution 


Ø  H(z) from ages of passively evolving galaxies 


Ø  ISW signal seen in cross correlations of CMB and LSS 


Ø  Galaxy peculiar velocities, seen in redshift space distortions 





Further evidence of low matter density from: 


Ø    Galaxy clusters 


Ø    Weak lensing measurements 




Closing the net   


By combining these data, we are beginning to 
learn about the dark energy properties.  



•  How much is there today? 


•  How is it evolving? 


•  Does it cluster?  


•  Could the laws of gravity be wrong?


Equation 
of state 

Dark energy 
sound horizon  



Understanding dark energy 

Ultimately, we will use these measured properties to determine 

the nature of dark energy, from a range of ugly models: 


Ø  Cosmological constant – energy density of vacuum, constant in 
space and time. 


Ø  Quintessence – scalar field rolling down some flat potential, 
similar to inflation; horizon scale sound horizon.


Ø  Phantom models – generic name for dark energy density which 
increases with time.  (Leading to ‘big rip’ and other problems.) 


Ø  Modified gravity – (e.g. f(R) or extra-dimensional models.)  
Background can look like cosmological constant, but structure 
growth is modified. 




The big questions 

How will we decide between these, or other possible models 

of dark energy (e.g. inhomogeneous models)?


Ø  Is dark energy a true cosmological constant, or is it 
dynamical? 


Ø  If it is evolving in space and time, what’s the best way to 
understand its nature and reconstruct its history? 


Ø  How much data is enough to understand dark energy? 


Answering these questions would be straightforward except for 
a fundamental problem: 


Apart from the cosmological constant model, most models 
of dark energy are not well enough defined to allow us to 
pose clear statistical questions. 


In particular, there generally is not a clear metric on the 
space of dynamical functions in most alternative models. 




Lambda or something else? 


Even given data consistent with a 
cosmological constant, the presence of 
noise means that there will be some 
dynamical model which provides a 
better fit. 



How likely is that specific dynamical 
model in the space of all models? 


As all good Bayesians know, the key is to look at the evidence ratios: 

�

dΛP(D|Λ)P(Λ)

�
dnwdρ0P(D|w, ρ0)P(w, ρ0)

Prior on space of 
cosmological constant 

amplitude   

Prior on space of 
dynamical dark energy 

models 



Lambda or something else? 


The priors can provide a volume 
suppression to high dimensional 
models.  But without knowing these 
theoretical priors, we cannot perform 
these evidence calculations. 



And you never know, there may be a 
simple theory that could easily explain 
what you assumed was simply noise…


�
dΛP(D|Λ)P(Λ)

�
dnwdρ0P(D|w, ρ0)P(w, ρ0)

Prior on space of 
cosmological constant 

amplitude   

Prior on space of 
dynamical dark energy 

models 



Phenomenological approaches  


Lacking guidance from theory, we need to make some choices 
for how to parameterize the dark energy behaviour and the 
prior on these parameters. 


Which variables should we parameterise? 



Many choices have been used in the literature, from the more 
phenomenological to more theoretical, e.g.: 






Some choices can be tightly tied to particular observations, and 
are insufficient to connect to all observations, while other choices 
are so specifically model based, they can be difficult to connect 
to other theories.  



We choose to work with w(a) because it connects to the 
expansion history and growth history (albeit assuming a simple 
sound speed) and is easy to relate to a range of theories. 


H(z), ρ(a), DA(z), w(a), γ(z), V (φ)



Phenomenological approaches  

Parametric or non-parametric?  



Parametric approaches tend to have relatively few parameters, 
often motivated by underlying models.  






Parametric approaches are simple, but they lose information. 



They can miss out on degrees of freedom which the observations 
are most sensitive to, and the results cannot be used to constrain 
any other parameterization. 



Non-parametric approaches tend to chose some set of 
cosmological functions to expand in some set of basis functions. 



 
 
E.g. binning, wavelets, Legendre polynomials



Given sufficient numbers of basis functions, they preserve 
information and can be a useful data compression step. 
     
The cost:  many poorly constrained degrees of freedom. 


w, [wo, wa], [wi, w0, wt,∆a]



What could observations tell us?

Here, we focus on non-parametric methods to ensure we don’t lose 

information that the observations are telling us. 


 To quantify this information, we can perform a Fisher matrix analysis 
for the projected experiments.  This yields a Gaussian 
approximation for the expected likelihood as a function of the 
basis amplitudes. 


"



Principal components are the eigenmodes of the Fisher matrix, and 
tell us the combinations of amplitudes that will be constrained the 
best.   These tend to be the modes that are low frequency and are 
localized where the data are measured. 


Given enough basis functions, these principal components are largely  
independent of the choice of non-parametric method.  But this 
gives a lower limit on the number of basis functions we can have 
without losing information.  "

Fij = −
�
∂2lnP(D|T)

∂Ti∂Tj

�
Fisher matrix describes 
how well an experiment 
constrains parameters 



What could observations tell us?

Principal components: "
Each experiment measures a different 

combination of modes, and often 
more than one independent mode. "

For example, SN constrain multiple 
modes at a reasonable level, while 
the CMB constrains only one (the 
CMB shift) but it measures it very 
well. "

By combining data we may eventually be 
able to learn about 4-5 parameters, 
starting with low frequency, but we’ll 
eventually get higher frequency 
modes. "

Very sensitive to assumptions about 
systematic errors!  "

Crittenden, Pogosian & Zhao ‘08 
Huterer & Starkman 
Huterer & Linder, Knox et al. 



What could observations tell us? 

Spectra of eigenvalues from 

future experiments: "
Most informative 

Least informative 

Higher ones are best determined   
~1/σ2  

Where do we draw the line between 
the useful modes and the unhelpful 
ones?   

It depends on what we think we 
already know!    

In the absence of any prior 
information, they are all informative.  
But we always know something, 
and at some point our prior 
knowledge is better than the weak 
observations.    



Reconstructing w(a) 

Various non-parametric methods have been suggested for  
reconstructing w(a) from the data:

 

o  Simple maximum likelihood estimators tend to be very noisy, 

because some eigenvalues have very large variance.  (Flat 
directions in the large parameter space, which take forever to 
converge in MCMC analyses.) 




o  Most methods implement some ad hoc smoothing aspect, 

intrinsically assuming the high frequency behavior is noise, 
rather than real behavior.  




o  An alternative is to keep only those principal components 

which are best determined (e.g. Huterer & Starkman 02).      
But how do we decide how many to keep? 




Reconstructing w(z) 
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Truncating the principal components (Huterer & Starkman 02) !

Keeping just a few principal 
components reduces the 
variance, but introduces another 
issue, bias. 

q  Where the data are poor at 

high redshifts, the result tends 
to the fiducial model (w=0.) 


q  The errors are also very small 
at high redshifts because none 
of the modes kept has any 
weight there.  


Many modes è large variance

  Few modes è large bias

q  Optimal number depends on 

the assumed input model. 


Large bias where 
the fit reverts to 
fiducial model




Bias and variance 

Mean squared error (MSE) as a metric for reconstructions 


�MSE� =
�

i

�(wmean
i − wrecon

i )2�+ (wtrue
i − wmean

i )2

MSE ≡
�

i

(wtrue
i − wrecon

i )2

This provides a means of evaluating the quality of a reconstruction.  
Considering the ensemble of data consistent with a given model, we 
can define the average reconstruction:



The difference between this and the true model is the bias. One can 
show: 











The challenge is to find a method which keeps both terms small. 


wmean
i ≡ �wrecon

i �

Variance
 (Bias)2




Bayesian reconstruction


Many reconstruction methods in the literature are arguably ad hoc, 
because they arbitrarily decide on what level to smooth or how many 
modes to keep. 


These decisions are made without reference to the evidence which 
might exist in the data, and usually without considering explicitly what 
theoretical models are more likely. 


Bayesian methods can provide a simple and transparent means of 
reconstruction. 


However, again the method requires a prior distribution for the 
expected w(a) behavior.  The advantage is that any assumptions are 
made fully explicit.   




Bayesian reconstruction

Bayes’ theorem: 
 
 

Posterior 

Likelihood Prior  

Summarizes 
theory and 
earlier data 

Evidence 

Normalizing factor, used to 
compare different models or 

parameterisations 

We search for the model parameters at which the posterior 
is maximum, and use the prior to control the flat directions 
in the likelihood.   



Defining a prior 


The prior distirbution should reflect the theoretical considerations 
or previous data.  Usually the new data far outweighs earlier data, 
so the prior primarily reflects theoretical considerations. 



Generically the prior is an arbitrary function on the space of non-
parametric amplitudes. 



We simplify by assuming that it is Gaussian.  Then we simply 
need to specify: 

•  The mean of the distribution, or fiducial w(a) model.

•  The covariance matrix describing how the amplitudes are 

correlated. 


We further assume the correlations are translation invariant in 
some independent variable, like the scale factor.   This means the 
covariance matrix is replaced by a 1-D correlation function. 




The correlated prior 


These assumptions imply we can define a correlation function: 







From this we can derive a covariance matrix.  



In principle, the correlation function should be derived from 
theoretical considerations. Here we explore phenomenological 
forms, which have a correlation length given by aC.  

For example,







If the correlation length is larger than the binning width, the 
precise choice of binning, or set of basis functions, becomes 
irrelevant.   




ξw(|a− a�|) ≡
�
[w(a)− wfid(a)][w(a�)− wfid(a�)]

�

ξw(δa) =
ξw(0)

1 + (δa/ac)2
,



Correlation functions
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We considered a few possible 
correlation shapes. 



These are all normalised to the 
same correlation length and the 
same constraint on the mean 
equation of state. 




Functions which are divergent at small scales lead to diagonal 
covariance matrices, which means all modes are degenerate and 
independent.  Flatter functions lead to more interesting correlations, 
so that higher frequency modes are better constrained. 



It is easy to discretize this to get the covariance matrix for a given 
basis. 




Prior principal components


0.4 0.5 0.6 0.7 0.8 0.9 1
 scale factor

-0.4

-0.2

0

0.2

0.4

ei
gi

en
 m

od
e

0 5 10 15 20
 mode number

102

103

104

105

1/
2

 (0)/(1+( a/ac)
2)

 (0) exp(- a/ac)

 (ac) ( a/ac)
-1/2

Perhaps surprisingly, the different correlation functions all have 
virtually the same eigenvectors, ordered in the same way.  These 
are effectively the Fourier modes. 



All that changes are the eigenvalues, but the highest frequency 
modes are always the most strongly constrained by the prior.  This 
is precisely the opposite of the data constraints. 




Interpreting the eigenvalues 
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ξw(δa) =
ξw(0)

1 + (δa/ac)2

Slope, or ratio of eigenvalues 
is determined by the 
correlation length aC


Low frequency 
weakest constraints


High frequency


First mode is the bin average 
(zero frequency), the 

constrain the prior would put 
on a constant w model


For simplicity we focus on a 
simple correlation shape: 




Marginalising away the fiducial model
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Since we are trying to determine 
if dark energy is dynamical, we 
don’t want the prior to prefer 
any particular mean value. 





We can remove this in many 
ways: 

•  Marginalizing over the fiducial 

value

•  Subtracting a locally defined 

average

•  Putting a prior instead on the 

derivative of w(a)


All of these methods just tweak 
the eigenvalues similarly. 



They reduce the constraints on 
the long wavelength modes, 
particularly the global average. 


Mean mode not 
constrained 



Wiener filtering 

Assuming the distributions are Gaussian, the predictions for the 
ensemble of data can be solved analytically.



Prior distribution





Likelihood



Maximum posterior solution











Expected bias


Pprior(w) ∝ e−(w−wfid)TC−1(w−wfid)/2

P(wobs|w) ∝ e−(wobs−w)TF(wobs−w)/2

wrecon = F−1(C+ F−1)−1wfid +C(C+ F−1)−1wobs

�

i

(wtrue
i − wmean

i )2 = ||F−1(C̃+ F−1)−1wtrue||2

High pass filter of fiducial 
model. (Removed) 


Low pass filter of noisy 
peak of likelihood  




Combining with data
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 Prior
 Data + Prior

The posterior Fisher matrix is 
the combined prior + Fisher 
matrix covariance:  







The information from the data 
govern the long wavelength 
modes, while the prior sets the 
higher frequency modes.  



In between, they compete to 
determine the best amplitudes.



In this example, four data 
modes survive to reconstruct 
the data.  


Low frequency
 High frequency


For the most part, the prior constrains 
those degrees of freedom that are 
noise dominated. 


Fpost = Fdata + C−1
prior



Impact of prior


The low frequency 
eigenmodes are very similar 
to the original ones defined 
by the data. 



Any model which can be 
expressed with these 
surviving modes can be 
reconstructed with little 
bias, while the prior 
minimizes the variance. 




Gaussian projections

We have shown that the Wiener filtering predictions match numerical 
realizations.  



We explored this for a range of potential models, assuming futuristic SN 
and H(z) data, and found they could well reproduce equation of state.



Higher frequency modes are smoothed out leading to biased 
reconstructions, but this was smaller than the variance contribution. 






Predicting the expected bias
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By expanding the models in the 
prior principal components, we 
can predict which models will be 
reproduced well, and which will 
be strongly biased. 



Since the prior prefers smooth 
functions, they are reconstructed 
with the least bias.   


Here only the ‘feature’ model and the fast transition model have 
significant bias, which is to be expected given their sharp features. 




More realistic simulations


These results are confirmed using MCMC reconstructions based on 
realisations of SN data.  (Not quite the same things being plotted as before.) 



Application to real data 


Our reconstruction method appears to work well on simulated 
data, what about real data? 



We have applied it to a collection of the latest data sets: 

•  Recent large SN data sets 


•  Union 2.1 (Suzuki et al. 2012)  580 SNe

•  SNLS3 (Conley et al. 2011)  472 SNe 


•  Full WMAP CMB power spectrum 

•  Recent H(z) measurements (Moresco et al. 2012)  

•  BAO measurements (BOSS, WiggleZ, SDSS LRG, 6dF) 

•  Redshift space distortion measurements (BOSS, WiggleZ)   




Principal Components 


Which modes survive the prior to form the reconstruction? 


This depends on the relative 
strengths of the data and the prior.  
 
SNLS3 yields a slightly stronger 
data constraint, but the bigger 
difference is on the strength of the 
prior.  In either case, only 3 or 4 
modes contribute.  
 
The relative strengths of the 
constraints on high frequency 
modes means that the priors 
would need to be shifted 
significantly for more modes to 
come through.  



Principal Components 


Which modes survive the prior to form the reconstruction? 


This depends on the relative 
strengths of the data and the prior.  
 
SNLS3 yields a slightly stronger 
data constraint, but the bigger 
difference is on the strength of the 
prior.  In either case, only 3 or 4 
modes contribute.  
 
The relative strengths of the 
constraints on high frequency 
modes means that the priors 
would need to be shifted 
significantly for more modes to 
come through.  



Reconstruction results 

The reconstruction is largely consistent with cosmological 
constant behaviour, but there is a trend towards increasing w at 
higher redshifts, but this depends on the choice of data sets and 
is more pronounced as the prior is weakened.  




Zhao et al. 2012

arXiv 1207.3804 


Present data 
 
Future 
constraints 



Reconstruction results 

The primary effect seems to come with the addition of the BAO 
data, which pulls down w(a) at low redshifts.  This is compensated 
at high redshifts to match with the integrated constraint from the 
CMB. 


Zhao et al. 2012

arXiv 1207.3804 


SN, CMB, H(z)  
 
+ RSD 
 
+ BAO  



Reconstruction results 


The reconstructed w(a) helps 
address the tension in the BAO 
measurements, which seem to 
consistently measure distances 
in excess of that for a 
cosmological constant. 



The RSD fits are improved at 
high z, but worse at lower 
redshifts. 


Zhao et al. 2012  arXiv 1207.3804 




Is it significant?  


Not surprisingly, with more degrees of freedom the fits improve 
relative to the cosmological constant model: 



SNLS3 
 
 
 
Union 2.1 





But does is this improvement enough to compensate for the less 
predictive theory?   For this we need the evidence, which for a 
Gaussian distribution is simply: 






∆χ2
data = 3.9∆χ2

data = 7.0

E ∝
�
det Cpost
det Cprior

�1/2

e−χ2
bf/2

Predictiveness – What fraction 
of prior volume is consistent 

with observations? 

Fit quality – How well can the 
model fit the observations? 



Evidence ratios   


We consider a family of priors which 
has a cosmological constant limit: 









We plot the logs of the evidence 
ratios, compared to the cosmological 
constant limit. 



Surprisingly, for some priors the 
evidence weakly prefers dynamical 
dark energy!   (Ad hoc?) 



Future data could do this easily for a 
broad range of prior choices.  


Relative predictiveness  

Relative fit quality  

C−1
prior → C−1

prior + σ−2
bin I



Conclusions

We have developed a Bayesian method for reconstructing the 
equation of state which has many advantages: 

•  The method is transparent and the assumptions are explicit.

•  Given an input model, we can predict the expected bias and 

variance of its reconstruction. 

•  Implementing it is easy and numerically inexpensive. It only 

requires choosing a prior covariance matrix and evaluating: 




We have focused on w(z) as the means for describing dark energy, 
but it could be applied to any basis, such as the quintessence 
potential. (Or other problems, like power spectra estimation.)  



Applying it to the present data, there is some evidence that w(a) was 
larger in the past, arising from BAO and SN data.  However, this not 
strongly preferred compared to a cosmological constant model. 


χ2
prior = wT C̃−1w



Gaussian processes 


This method has many similarities to a ‘Gaussian Processes’ (GP) 
approach, which has recently been applied to the dark energy 
context: 

Holsclaw et al, 2010; Shafieloo et al 2012; Seikel et al 2012.



The primary philosophical difference is that rather than choosing a 
prior on theoretical grounds, based on minimizing the bias of 
reconstruction in ‘typical’ models, GP describes the priors in terms of 
hyperparameters which are marginalised over. 




How do we describe dark energy? 


Parametric approaches: 

Assume some particular functional form for ρDE,  wDE  or some other 

way of describing dark energy, and constrain the parameters of 
that form.  

Phenomenological:


More theoretical (e.g. quintessence potential): "

Potential issues: !
Loss of information 


Can’t be used to constrain any other parametric model  


Could potentially miss interesting features because they are not allowed in 
your parameterization! 


ΩDE , w, (w0, wa), (w0, w1, zt,∆z)

V (φ),φ0



How do we describe dark energy? 


Non-parametric approaches: 

Choose some cosmological function or functions to expand in a set of 

basis functions. 

E.g.  

Basis functions could be binning, or other orthogonal functions which 
allow arbitrary behavior.   

Potential issues: !
How many basis functions do we use? 


Too few, and your answers are sensitive to this choice.  


Too many, and there will be many parameter degeneracies (flat directions 
in likelihood); hard to converge MCMC methods. 


Also, what should we use as independent variable?  


H(z), ρ(a), DA(z), w(a), γ(z), V (φ)


