





















































|   | Casimir effect is verified (not at the % level)                  |
|---|------------------------------------------------------------------|
| • | There is ample room available for improvement of                 |
|   | Casimir tests of short range gravity                             |
|   | A puzzle                                                         |
|   | > some experiments favor the lossless plasma model rather than   |
|   | the better motivated dissipative Drude model                     |
|   | > a solution would lead a better understanding !                 |
|   | May this be due to the contribution of electrostatic patches ?   |
|   | > only one solution to be sure : measure the patch voltages with |
|   | KPFM (Kelvin Probe Force Microscopy)                             |
|   | other options : compare Casimir data with the results            |
|   | accumulated in surface physics, ion traps, cold atom physics     |