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PhD Thesis

Klaus Kirsten (Baylor University)

IL NUOVO CIMENTO VoL XX, N. 1 1° Aprile 1961

Application of the Chew and Low Extrapolation Procedure
to K™+ d-»Y X +4= Absorption Reactions.

E3

Downen

Department of Matkematicol Physics, University of Birmingham - Birmingham

(ricevato il 30 Geasio 1961)
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" ...it intrigued me that one problem (charge+plane) could be gotten
from another (just charge) by geometrical reasoning plus uniqueness.
Thompson's book (Elementary Lessons in Electricity and Magnetism)
took this further. Chapter 5 is devoted to the image and inversion
methods and | must have read this closely, at this time, as there are
lots of marginal notes..."
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" ...it intrigued me that one problem (charge+plane) could be gotten
from another (just charge) by geometrical reasoning plus uniqueness.
Thompson's book (Elementary Lessons in Electricity and Magnetism)
took this further. Chapter 5 is devoted to the image and inversion
methods and | must have read this closely, at this time, as there are
lots of marginal notes..."

Physics master:

"Don’t shut out mathematics when you close the door of the physics
lab.”
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" ...it intrigued me that one problem (charge+plane) could be gotten
from another (just charge) by geometrical reasoning plus uniqueness.
Thompson's book (Elementary Lessons in Electricity and Magnetism)
took this further. Chapter 5 is devoted to the image and inversion
methods and | must have read this closely, at this time, as there are
lots of marginal notes..."

Physics master:

"Don’t shut out mathematics when you close the door of the physics
lab.”

Math master:
"Don't leave your gumption outside the door when you come in!”
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" After reading Eddington c. 1960 it was clear to me (and others of
course) there is a strong analogy (at least) between gravitation and
e&m ... (His work has very strongly influenced me.) So | played a
game of asking for the gravitational analogues of existing e&m
concepts. The basic analogue is between field strength/charge and
curvature/spin.”
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" After reading Eddington c. 1960 it was clear to me (and others of
course) there is a strong analogy (at least) between gravitation and
e&m ... (His work has very strongly influenced me.) So | played a
game of asking for the gravitational analogues of existing e&m
concepts. The basic analogue is between field strength/charge and
curvature/spin.”

"...spin, in general relativity, plays the passive role that charge plays
in electromagnetism in the sense that it is the spin-curvature coupling
that knocks a particle off a geodesic.”
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PHYSICAL REVIEW D

VOLUME 13, NUMBER 12

15 JUNE 1976

Effective Lagrangian and energy-momentum tensor in de Sitter space

J. S. Dowker and Raymond Critchley
Department of Theoretical Physics, The University, Manchester, 13, England
(Received 29 October 1975)

The eﬂ':cuve Lagrangian and vacuum energy~momenlum tensor { T*"> due to a scalar field in a de Sitter-

space back are using the

method. For generality the scalar field

equation is chosen in the form (5 + £R + m?)¢ = 0. If £ = 1/6 and m = 0, the renormalized  T**) equals
£"(960m°a*)~!, where a is the radius of de Sitter space. More formally, a general zeta-function method is

developed. It yields the renormalized effective Lagrangian as the derivative of the zeta funcuon on lhe curved

space. This method is shown to be virtually identical to a method of di i T to

any Riemann space.

L INTRODUCTION

In a previous paper' (to be referred to as I) the
effective Lagrangian £’ due to single-loop dia-
grams of a scalar particle in de Sitter space was
computed. It was shown to be real and was evalu-
ated as a principal-part integral. The regulariza-
tion method used was the proper-time one due to
Schwinger? and others. We now wish to consider
the same problem but using different techniques.
In particular, we wish to make contact with the
work of Candelas and Raine,® who first discussed
the same problem using dimensional regulariza-
tion.

Some properties of the various regularizations
as applied to the calculation of the vacuum expec-
tation value of the energy-momentum tensor have
been contrasted by DeWitt.* We wish to pursue
some of these questions within the context of a
definite situation

proach x’. Secondly, the term X does not have

to be a constant, but it should integrate to give a
metric-independent contribution to the total action,
ww,

The Schwinger-DeWitt procedure is to derive an
expression for K, either in closed form or as a
general expansion to powers of 7, then to effect
the coincidence limit in (1), and finally to perform
the 7 integration. This was the approach adopted
in I. We proceed now to give a few more details.

We assume that we are working on a Riemann-
ian space, 9, of dimension d. The coincidence
limit K(x, x, 7) can be expanded,®

K(x,%, )= i(47i1)™* 3" a,(x)(i )", @)
=
where the a, are scalars constructed from the
curvature tensor on 9N and whose functional form
is independent of d. The manifold 91 must not

Klaus Kirsten (Baylor University) Background potentials Benasque. Sept. 22, 2011
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their interesting papor.'

The difference isthat whereas in (2) and (4) the
coefficients a, are taken to be specific dimension-
independent functions of the curvature, if we ex-
pand the propagator K on a sphere Si, in powers
of 7, the coefficients will be those functions of
2w obtained by substituting the curvature expres-
sion of the sphere into the a, of (2). We would ex-
pect the two methods to produce the same renor-
malized theory after continuation to d =2w =4,

We now turn to another regularization method—
the zeta-function method. We start from the Feyn-
man Green’s function G .(x”, x’) expressed in prop-
er-time parametric form

G.=t 'gdeE"mlfL{(T), (5)
with

Gulx", %) =(x"1G %)
and

K(x”, x', ) =(="|K(Dl %7,

and construct the space-time matrix power G
Use of the semigroup property, K(O)K(1)=K(0+7),
rapidly gives

(mig=[r@) [(drete k@, @

where we now consider v to be a complex variable.
If we compare Eq. (6) with one generalization of

the Riemann zeta function® we are led to call

G.’ the zeta function for the manifold I,

Klaus Kirsten (Baylor University) ckground potentials Benasque, Sept. 22, 2011

o), 3
LM i im G, ¥, ) (®)

om”

Then we have generally
S8 mt) =~ i [ G, x, ud?, )

since we assume that £(,)(x, ) is zero.
The zeta-function regularization is effected in
(9) by replacing G’ by G..” and defining
SR =M gt s lim &0,

vl

with
eW=cty fz diagt v, u?)du?

=Li(v-1)"" diagt (v -1, m%). (10)
Then we have

£W=—1ilim (v-1)" diagg (0, m*)

vah
- 44 diaggf (0, m?), (1)

where ¢'(v,w)=(d/dv) {(v,w). The first term in
(11) will have to be removed by an infinite renor-
malization. There may still be finite renormaliza-
tions from the ¢’ term. It is this term only that
is yielded by the method of Salam and Strathdee,®
which consists of noting that InG =dG"/dvl, -, and
then using the formal result £*)==3 1 diagInG..
In a general space-time we will not know ¢ in
closed form and we must have recourse to the

15/ 41



3232 i {51

pendent of the geometry and we can then apply
Ford’s version of Casimir’s argument. This fact
agrees with a remark of Ford’s.'® However, the
method gives a zero answer for m =0, as expected.
If m does not vanish we find the value

Tc(2) =m*(647 %) [2 Rey(3 + i a) - In(m?a?)]

for this “Casimir renormalized” T.

It is amusing and probably not significant to
notice that if we set A =0 in Eq. (43), for w=2,
and then use (46) on the right-hand side, we obtain
a=107%** cm. Thus a massless, conformally in-
variant scalar field can support self-consistently
through its vacuum fluctuations a de Sitter uni-
verse of typically quantum geometric dimensions.

VL. DISCUSSION

In view of recent papers?: 11 13:18:20.21 o the
subject of vacuum energy in curved spaces it
seems unnecessary to give a review of the back-
ground material.

We have considered the coupled Einstein-Klein-
Gordon system for a given (de Sitter) background
gravitational field and have renormalized the
field equations in the traditional fashion.!® The
problem, if there is one, seems to be the inter-

DOWKER AND RAYMOND CRITCHLEY 13

do not view this as a real difficulty. The only
conformal rescalings allowed, if we are to remain
in de Sitter space, are constant rescalings.

At the more technical level, instead of the di-
mensional regularization method it would have
been possible to use the zeta-function approach
outlined in Sec. II. This would have involved a
discussion of zeta functions on spheres, an inter-
esting subject in its own right and probably worth
pursuing from a formal angle. However, the
result for us would have been the same.

The advantage of the particular dimensional
regularization used in this paper (and earlier in
Ref. 3) is that all quantities are displayed as
closed hypergeometric expressions. In I we
sketched an alternative scheme which also leads
to similar results. Briefly, Eq. (25) is written
as a sum over classical paths by using a Mehler-
Dirichlet integral for P, and then a -function
transformation. In the resulting equation for G
the integrations can be performed for w<1 and
we find an expression for G, (x, ¥, w) which differs
from the Candelas and Raine form (28) but which
produces the same renormalization theory. For
this reason we have not employed it here, al-
though it possesses certain advantages and al-
lows a comparison with the proper-time method

Klaus Kirsten (Baylor University) Background potentials Benasque, Sept. 22, 2011
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J. Phys. A: Math. Gen., Vol. 11, No. 5, 1978. Printed in Great Britain

Finite temperature and boundary effects in static space-times

J S Dowker and Gerard Kennedy

Department of Theoretical Physics, The University of Manch , Manch M13 9PL,
UK

Received 23 January 1978

Abstract. Expressions are derived for the free energy of a massless scalar gas confined to a
spatial cavity in a static space-time at a finite temperature. A high temperature expansion
is presented in terms of the Minakshisundaram coefficients. This gives curvature and
boundary corrections to the Planckian form. The regularisation used is the zeta function
one, and yields a finite total internal energy. However, it is known that the local energy
density diverges in a non-integrable way as the boundary is approached. A ‘surface
energy’ is suggested to reconcile these two facts. Explicit expressions for the total energy
inside two infinite rectangular waveguides are obtained.

1. Introduction

The system under investigation in the present work is a quantum field at finite
temperature in a static space-time that may have boundaries. Since a number of
review articles have recently appeared (DeWitt 1975, Isham 1977, Davies 1976) it is
unnecessary to repeat the motivation for studying field theory in curved space-time.
In an earlier work (Dowker and Critchley 1977a) we discussed the case of a scalar

field in an Einstein universe and derived the effective Lagrangian and stress—enerov
Klaus Kirsten (Baylor University) Background potentials Benasque, Sept. 22, 2011
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bt <o ot ittt T s gl o ¢ it Stz dand Sl L g e - St
= -3/2-
i3 £5(0, ) =37 %32

which shows that the /> pole cancels the 3(0, «©) term in (38). When applied to the
space-time, ./, for which d =4, we can remove the time integration in the trs to give
trs since the integrands are time independent. Thus

tr5 £(0, 0)=i(1672) "¢, (40)

where the factor of i comes from the continuation from the Euclideanised space k.
This result shows that the subtraction (34) cancels the &; pole in (38) and we finally
arrive at the ‘renormalised’ free energy (equivalently, the negative of the effective

Lagrangian),
Fum-T o O 0 LA G p0.og
sl ém Bo-1itaf1n(£2) +4]
el £ ara-pea <oy (D)7 G
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2
m%j)*—g) = 25 ()80 )x a5, A %)) @s)

where the factor of s comes from the fact that there are s integration points in try £y,
each with a factor of A°.

Equation (45) can be used to prove that the Minakshisundaram coefficient ca/2, is
conformally invariant. Setting s equal to zero in (45) and using equation (39) we find
the required statement,

8canlr’g] i

SA(x) ¢, (45)

a result incidental to our present purpose, but useful later.
In a static space-time we can, as before, remove the time integration in trs and get
the reduced formula

2
8tra i Ae) _po) (rye (e e, tig (s, AR 1) @)
A (x)

where the conformal factor is assumed to be a function of only the spatial coordinates.
The idea now is to use (47) to expand trs (s, A’g) about the point A = 1. To first
order in In A we have

iy 8 tr3 £(s,A%)
tra (s, A"g)=trs L(s, g)+J- dx S TN InA(x) (48)
so that from (47)
trs £(s, A%g) —trs (s, g) =25 J’ dxg"*(x, tl¢(s, g)ix, £) In A (x)+ D, (49)

where D, is the remainder. If A is constant it is easily checked that D; is zero so that
D, must depend only on the gradient of A,

D, = D[V, g] with D;[0, g] =0
and
Do[VA, g]=0.

Klaus Kirsten (Baylor University) Background potentials "Benasque. Sept: 22, 2011 19 / 41



J. Phys. A: Math. Gen., Vol. 10, No. 1, 1977. Printed in Great Britain. © 1977

Quantum field theory on a cone

J S Dowker

Department of Theoretical Physics, The University of Manchester, Manchester M13 9PL,
UK

Received 24 June 1976

Abstract. The expressions derived by Sommerfeld and Carslaw for the Green functions and
diffusion kernels in a wedgg of arbitrary angle are shown to be useful in discussions of the
Feynman Green function in Rindler space and other space—time metrics.

1. Introduction

The fact that the polar angle ¢, on a plane say, is not a single-valued function of position
Klaus Kirsten (Baylor University) éackground potentials Benasque, Sept. 22, 2011 20/ 41



fit together, complete in themselves, like a watch.”

"| have always been interested in exact solutions, even if unphysical,
so long as they are pretty. They seem to be working mechanisms that

Klaus Kirsten (Baylor University)
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Casimir energies and forces in the presence of
background potentials

Klaus Kirsten

Baylor University

Benasque, Sept. 22, 2011

(Supported by the NSF under PHY-0757791)

Joint work with Matthew Beauregard, Guglielmo Fucci, Pedro Morales (Baylor University)
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© Motivations

© Basic ideas in one dimensions
© Compactly supported potentials
@ Spherically symmetric potentials

© Surfaces of revolution

© Outlook
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Motivations

@ Casimir energy for surfaces of revolution
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Motivations

Eigenvalue problem for a suitable differential operator P:

Pug(x) = Apug(x), 0< A <X, AN—o00 as [ — o0
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Motivations

Eigenvalue problem for a suitable differential operator P:

Pug(x) = Apug(x), 0< A <X, AN—o00 as [ — o0
@ Heat kernel:

Kp(r) = Y e ™

/=1
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Motivations

Eigenvalue problem for a suitable differential operator P:

Pug(x) = Apug(x), 0< A <X, AN—o00 as [ — o0

@ Heat kernel:

Kp(r) = Y e ™

4

o0

1
oo

70 Z a0(P, B) A=D/2
0=0,1/2,1,...
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Motivations

Eigenvalue problem for a suitable differential operator P:

Pug(x) = Apug(x), 0< A <X, AN—o00 as [ — o0

@ Heat kernel:

Kp(r) = Y e ™

4

o0

1
oo

70 Z a0(P, B) A=D/2
0=0,1/2,1,...

@ Zeta function:

Cp(s) = Z Ay ° s > g

£=0
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Zeta function (p(s) = >0, A, ° as best organization of the spectrumJ

o Casimir energy

lz_:o A2 %CP(SI 1

_§> .

2
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Zeta function (p(s) =

Y oA, ° as best organization of the spectrumJ
o Casimir energy:
I NS 1\ ,
=32 M = e ( = ‘5)
=0

More precisely:

CP(—E-F) S

P/t (P,B)+FP ¢(p ( ;) + O(e)
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Basic ideas in one dimensions
o Let:

2
p__?

dx?

Klaus Kirsten (Baylor University)
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Basic ideas in one dimensions
o Let:

@ Eigenvalue problem:

Pug(x) = Aue(x) ug(0) = up(L) =0
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Basic ideas in one dimensions
o Let:

@ Eigenvalue problem:
Pug(x) = Aue(x) ug(0) = up(L) =0

o Consider:
2

Puy(x) = (—% + V(X)) ux(x) = K2 ui(x) keC

Klaus Kirsten (Baylor University) Background potentials Benasque, Sept. 22, 2011 27 /41



Basic ideas in one dimensions

o Let:
= ’ 14

Eigenvalue problem:

Pug(x) = Aue(x) ug(0) = up(L) =0

Consider:

2
Puy(x) = < :2 (X)> A(X) = K2 (%) keC

Impose the initial condition:
u(0)=0,  u(0)=1

This defines a unique solution:

ug(x)

Klaus Kirsten (Baylor University) Background potentials Benasque, Sept. 22, 2011 27 /41



Basic ideas in one dimensions

Eigenvalues for boundary value problem determined by: (L)

=0

J

=] = = E A
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Basic ideas in one dimensions

Eigenvalues for boundary value problem determined by: wu(L) =0
@ Zeta function

J
Cp(s) = /kk_zs—lnuk(L)

Y
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Basic ideas in one dimensions

Eigenvalues for boundary value problem determined by: wu(L) =0
@ Zeta function

Cp(s)

J

—2s =
57 /dk k In uk(L)

sinTs

/Wk%—mwm
0
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Compactly supported potentials

@ Casimir force:

10
FCas =

1o (1
20a 2

0 0
o dkk—

aaﬂ In u,-k(L).
0
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Spherically symmetric potentials

o Let:
P=—-A+V(r)

e Eigenvalue problem:

P1/}n7g(r, Q) = A%,Ewn,ﬁ(n Q)a T,bn,e(a» Q) = Z/)n,e(b, Q) =0

Klaus Kirsten (Baylor University) Background potentials Benasque, Sept. 22, 2011 34 /41



Spherically symmetric potentials

o Let:
P=—-A+V(r)

e Eigenvalue problem:

Pwn,f(rv Q) = Aiéwn,f(r? Q)a wn,ﬂ(a7 Q) = wn,Z(ba Q) =0

o Radial differential equation v = ¢ + %:

d-1\2
("2 L 44 W—V(r)uz) bru(r) = 0,

dr? = rdr r2

oan(a) =0, ¢, (a) =1
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Spherically symmetric potentials

Eigenvalues for boundary value problem determined by: ¢, ,(b) =0 J

Klaus Kirsten (Baylor University)
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Spherically symmetric potentials

@ Zeta function:

Eigenvalues for boundary value problem determined by: ¢, ,(b) =0 J

. 0 d
¢p(s) = 2% g, / dk k2
0

. @ In (ﬁ,’k,,,(b).

Klaus Kirsten (Baylor University)
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Spherically symmetric potentials

Eigenvalues for boundary value problem determined by: ¢, ,(b) =0 J

@ Zeta function:

[e.o]

sinTs 25 d
- Zd,,/dk k22— I i (b).
v 0

Cp(s) =

@ Example for asymptotic term:

Klaus Kirsten (Baylor University) Background potentials Benasque, Sept. 22, 2011 35 /41



Surfaces of revolution

N

NS
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Surfaces of revolution

f(x)

K—7

@ Parameterization and metric of the surface

X
S=| f(x)cosb |,
f(x)sind

Klaus Kirsten (Baylor University) Background potentials Benasque, Sept. 22, 2011 36 / 41



Surfaces of revolution

@ Parameterization and metric of the surface

= X Xcos X) = L+ (f/(x))2 0
g ) o (TR )

Klaus Kirsten (Baylor University) Background potentials Benasque, Sept. 22, 2011 36 / 41



Surfaces of revolution

@ Laplacian on the surface

Ao = ——0, (g‘“’\/E 8V) o

detg
Po__f1f" _Op f10p) 1 0%
)2 \ox2 1+4(f)2 ox f 9Ox 2 062

1
1+ (
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Surfaces of revolution

@ Laplacian on the surface

Ao = ——0, (g“”\/@ 81/) o

detg
1 0% T 37@_’_5’ Oy 1 0%
14+ ()2 \0x?2 1+(f)? dx f Ox

2 962

o Eigenvalue problem for the Laplacian

Onk (X, 0)=ni(x) €%, ke Z
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Surfaces of revolution

@ Laplacian on the surface

1
— iz
Ap = detgau (g \/detg 8V>g0
(8% 't 0p f 8@) 1 0%

1
1+ ()2 \0x2 1+ ()2 ox TF ox 2 0602

o Eigenvalue problem for the Laplacian

Onk (X, 0)=ni(x) €% ke U =

! 1 £ 2
a0+ a0 (7 = e )+ (Ao ) (004 () i) =

Ynk(a) = Yai(b) =0
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Surfaces of revolution
o Let

f‘/
u—= —

f/f// _{x k2
Fo1r(fe T
o Consider

V" + w4+ vip =0,
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Surfaces of revolution
o Let

u=

f‘/ f/ f//

foo1+(F)%
o Consider

V" + w4+ vip =0,
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Surfaces of revolution

f’ f’f" k2
e N O LG

o Let

o Consider

Tﬂ” + U’(/Jl + V¢ = 07 ’(/Jk,A(a) = 07 w;@)\(a) =1

o Eigenvalues are determined by

Yra(b) =0
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Surfaces of revolution

o Let , L
foff

= -7 = (A=) 1+ (F)?

B T () A (A f2>(+())

o Consider

V" + w4+ vip =0, Yia(a) =0, P (a) =

o Eigenvalues are determined by

Yra(b) =

@ Zeta function

;i /d)\)\s|n¢k)\() Rs > 1
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@ Relative Casimir energy for surfaces of revolution:

b
B 1 Vit o1
ECals,asym = %C.{?(_z)/dx (f2 - C2>
a

L12ff" —11(1 + %) + 3In(4nf) {f’z(l + %) - 2f "]
/ F2(1+ f12)3/2

b 2 2\2 2 2 2 2
/ 3F2(1+ £1%)2 — 6ff £ (1 + %) — 6AFF'f"* + BF2F"' (1 + f°)

f2(1+ £7%)2
b
/ V12— }

5 \

#‘H
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1 d
rel _ = E 1/2 Y
ECeas,ﬁn - T k/dZZ dz

2\/ 1+ ZC2(,0k7_k22(b)

In
1—exp (—M\/l + zc2)

——

b
1 /dx—sz’2(—4+zf2)(1+f’2)+2zf2f”(1+zf2)

" 16k (1 + 2f2)5/2(1 + £12)3/2

b
1 2
—W/dx [zf{f/ [—(4+zf2(—1o+zf2))f’2(1+f' )2

a

FF(L 4 2f2)(—7 + 2262)(1 + F2)F" + 4F2(1 + zf2)2f”2}

12N c1r 1
—FPL+ 221+ )f }(1+zf2)4(1+f’2)3]}
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Outlook

@ Casimir energies and forces for 'separable situations' computable by
simple numerics; other boundary conditions easily obtained by
changing initial conditions.
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Outlook

@ Casimir energies and forces for 'separable situations' computable by
simple numerics; other boundary conditions easily obtained by
changing initial conditions.

@ Results available to evaluate functional determinants and Casimir
energies for surfaces of revolution

N\

@ Cusp-like singularities?
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