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A. Introduction



A first look at the photon polarization tensor

consider quantum electrodynamics (QED):
vertex :propagators :

I 1-loop polarization tensor (in the absence of external fields)

Πµν(k) =

I in the presence of an external field external field :

→ 1-loop polarization tensor

≡



Photon propagation in the quantum vacuum

Πµν is the central input to an effective theory for photon
propagation in the quantum vacuum

Leff [A] = −1
4FµνFµν −

1
2

∫
x ′

Aµ(x) Πµν(x , x ′) Aν(x ′)
↑

vacuum fluctuations

(here Aµ denotes a classical, macroscopic field)
without external fields: Πµν easily evaluated in momentum space
↔ in the presence of (constant) external fields: rather involved
I gives rise to modified speeds of light in external fields
I accounts for pair creation effects ∼ imaginary part



Our agenda

Πµν for arbitrarily oriented, constant external e.m. fields is
I conveniently evaluated in momentum space,
I known in terms of a double integral expression

[I. A. Batalin & A.E.Shabad; Sov. Phys. JETP 33, 483 (1971)]
[W. Dittrich & H. Gies; Springer Tracts Mod. Phys. 166, 1 (2000)]
[C. Schubert; Nucl. Phys. B 585, 407-428 (2000)]

within the propertime formalism [J. S. Schwinger; Phys. Rev. 82, 664 (1951)].

We aim at
I maximum, in particular non-perturbative insights,
I retaining the full momentum dependence.

This is
I important whenever transforming to position space,
I necessary when boundary conditions are set in position space.



B. The photon polarization tensor



The basic structure of the photon polarization tensor

constant magnetic field: metric (−,+,+,+) → k2 = k2 − ω2

[L. F. Urrutia; Phys. Rev. D 17, 1977 (1978)]

It is convenient to decompose the four-momentum kµ in components ‖ and ⊥ to B = Be1,

kµ = k
µ

‖ + k
µ

⊥ , k
µ

‖ = (k0, k1, 0, 0) , k
µ

⊥ = (0, 0, k2, k3) . (1)

Tensors can be decomposed analogously, gµν = g
µν

‖ + g
µν

⊥ .

Then

Πµν(k) =
α

2π

∞
∫

0

ds

s

+1
∫

−1

dν

2

{

e−iΦ0s
z

sin(z)

[

N0

(

gµνk2 − kµkν
)

+ (Ñ1 −N0)
(

g
µν

‖ k2‖ − k
µ

‖ k
ν

‖

)

+ (Ñ2 −N0)
(

g
µν

⊥ k2⊥ − k
µ

⊥k
ν

⊥

)

]

+ c.t.

}

, (2)

with z = eBs, and

Φ0 = m2 − iǫ+
1− ν2

4
k2‖ +

cos νz − cos z

2z sin z
k2⊥ , (3)

N0 = cos νz − ν sin νz cot z ,

Ñ1 = (1− ν2) cos z ,

Ñ2 = 2
cos νz − cos z

sin2 z
. (4)



The basic structure of the photon polarization tensor

constant magnetic field: [W. Dittrich & H. Gies; Springer Tracts Mod. Phys. 166, 1 (2000)]

With projectors onto photon modes polarized ‖ and ⊥ to the plane spanned by k and B,

P
µν

‖ = g
µν

‖ −
k
µ

‖ k
ν

‖

k2‖
, and P

µν

⊥ = g
µν

⊥ −
k
µ

⊥k
ν

⊥

k2⊥
. (5)

and a third projector,

P
µν

0 = gµν −
kµkν

k2
− P

µν

‖ − P
µν

⊥ , (6)

we obtain

Πµν(k) = Π0P
µν

0 +Π‖P
µν

‖ +Π⊥P
µν

⊥ , (7)

with






Π0

Π‖

Π⊥







=
α

2π

∞
∫

0

ds

s

+1
∫

−1

dν

2



e−iΦ0s
z

sin z











N0

Ñ1

N0







k2‖ +







N0

N0

Ñ2







k2⊥



+ c.t.



 . (8)

The three projectors span the transverse subspace.



Available insights and limitations

constant magnetic field:

I eB
m2 � 1 ↔ perturbative expansion in # of field insertions

= + + + . . .

I eB
m2 arbitrary: limited insights

[W. y. Tsai & T. Erber; Phys. Rev. D 10, 492 (1974) & Phys. Rev. D 12, 1132 (1975)]

but: “on-the-light-cone” ↔ k2 = 0, and for k2
⊥

eB � 1 only

I eB
m2 � 1 & k2 > −4m2 ↔ restriction to lowest Landau level,
i.e., below pair-creation threshold

[A. E. Shabad; Annals Phys. 90, 166 (1975) & arXiv:hep-th/0307214]



Towards a special alignment

here we want to elaborate on the latter point:
I we aim at insights beyond the pair-creation threshold, and

beyond “on-the-light-cone”
I we claim that the special alignment k ‖ B is the simplest case,

Φ0 = m2 +
1− ν2

4
(
k2
‖ − ω

2)+
cos νz − cos z

2z sin z k2
⊥

I in this limit, Πµν has the following structure:

Πµν(k) = Π‖(k) Pµν
‖ + Π±(k)

(
Pµν

+ + Pµν
−
)︸ ︷︷ ︸

circular polarization (±)

with {Pµν
+ , Pµν

− } ≡ {P
µν
0 , Pµν

⊥ }
I even though, the ‖-component is of particular interest



A special alignment

consider k ‖ B ↔ k⊥ = 0:
[R. A. Cover & G. Kalman; Phys. Rev. Lett. 33, 1113 (1974)]
[W. y. Tsai & T. Erber; Act. Phys. Austr. 45, 245 (1976)]

I propertime integration can be performed explicitly:∫ ∞
0

ds → lim
ε̃→0

∫ ∞−iε̃

0−iε̃
ds ,

and analytical continuation in eB, consistent with the
electric-magnetic duality: B ↔ iE , and kµ‖ ↔ kµ⊥

I in the full momentum regime

I focus on the ‖ - component:
(

Φ0 = m2 − iε+ 1−ν2

4 k2
‖

)
Π‖(k) = k2

‖
α

2π

1∫
0

dν (1− ν2)

[
ln
(

m2

2eB

)
−Ψ

(
Φ0

2eB

)
− eB

Φ0

]
.



A special alignment

I the Digamma function has an exact series representation,

Ψ(ξ) = −γ − 1
ξ

+
∞∑

n=1

ξ

n(ξ + n)
,

where γ denotes the Euler-Mascheroni constant
I therewith:

(
Φ0 = m2 − iε+ 1−ν2

4 k2
‖

)
Π‖(k) = k2

‖
α

2π

1∫
0

dν (1− ν2)

[
eB
Φ0
−
∞∑

n=1

Φ0
n (Φ0 + 2eBn)

+ γ

]

= k2
‖
α

2π

1∫
0

dν (1− ν2)

[ ∞∑
n=0

cneB
Φ0 + 2eBn + γ −

∞∑
n=1

1
n

]
,

with c0 = 1, cn∈N = 2.
eB
Φ0
�1

−−−−→ k2
‖
αeB
2π

1∫
0

dν (1− ν2)

Φ0
.



A special alignment

We briefly outline an alternative way to obtain the result for Π‖:
I via Landau levels
I in the absence of external fields:

p

p + k

γνγµ

In D = d+ 1 space-time dimensions, this yields (not yet renormalized):

Πµν(k) = i(ie)2 tr

{
∫

dDp

(2π)D
γµ

i

/p−m− iǫ
γν

i

/p+ /k −m− iǫ

}

=
(

k2gµν − kµkν
) αD

2

Γ
(

4−D
2

)

(4π)
D−2

2

∫

1

0

dν (1− ν2)

[

1

m2
− iǫ+ k2 1−ν2

4

]
4−D

2

. (1)



A special alignment

turning on a magnetic field k ‖ B:
We rewrite

∫
d4p

(2π)4
=

∫
dp0dpx

(2π)2

∫
dpydpz

(2π)2
=

∫
d2p‖

(2π)2

∫
dp2⊥
4π

. (2)

In a magnetic field, we encounter Landau level quantization, implying

p2⊥ = 2eBn, with n ∈ N0. (3)

Accordingly,

∫
d4p

(2π)4
→

eB

2π

∞∑
n=0

cn

∫
d2p‖

(2π)2
, (4)

Focusing on the ‖-component,
m2 → m2

n
≡ m2 + 2eBn. (5)

The integral to be performed is in D = 2 dimensions.

→ after renormalization:

Π‖(k) = k2
‖
α

2π

1∫
0

dν (1− ν2)

[
ln
(

m2

2eB

)
−Ψ

(
Φ0

2eB

)
− eB

Φ0

]
.



Back to the general situation

now, we have:
I identified the correct propertime integration contour,
I non-perturbative insights in the full momentum regime by

means of “large z” expansion ↔ eB
Φ0
� 1

the result is:
I only ‖ - component does not vanish in this limit,

Π0 ≈ 0, Π⊥ ≈ 0,

Π‖ ≈ e−
k2
⊥

2eB k2
‖
αeB
2π

1∫
0

dν 1− ν2

m2 − iε+ k2
‖

1−ν2
4

I allows for a Fourier transformation



C. An exemplary application



Beyond QED - Minicharges

I the photon polarization tensor accounts for the vacuum
fluctuations of the underlying theory

I perhaps there are so far undetected particles (e.g., fermions)
around - who knows? ↔ beyond QED / standard model
→ Minicharges: tiny coupling εe, mass mε

I if they are there, they contribute to the polarization tensor

≡

question: how can these effects be separated/→ detected?



Light-shining-through-walls

answer: by shining light through walls! → there are experiments(!)

I basic idea: “virtual tunneling” or “tunneling of the 3rd kind”

I problem formulated in position space
→ the wall imposes a boundary condition

I without magnetic field [H. Gies & J. Jaeckel; JHEP 0908:063 (2009)]

I in the presence of an external magnetic field
→ need full momentum dependence
→ if mε is tiny as well, we are in the non-perturbative regime



The particular scenario

Consider the following scenario:

theoretical treatment (very schematic):

B
k ‖ x̂

I partial Fourier transformation
I (ω2 + ∂2

x ) A‖(x , ω) =

∫
dx ′ Π(x − x ′, ω) A‖(x ′, ω)︸ ︷︷ ︸

=:j(x ,ω)

I j(x > 0, ω) =

∫ 0

−∞
dx ′′Π(x − x ′′, ω) a(ω) sin(ωx ′′)

with incident photon amplitude a(ω).

I transition probability: Pγ→γ = lim
x→∞

∣∣∣∣Aout(x , ω)

a(ω)

∣∣∣∣2



The particular scenario

We find: P(strong)
γ→γ ' α2 ε4

36π2

(
εeB cos2 θ

m2

)2

e−
ω2 tan2 θ
εeB .

With parameters B = 5T, ω = 532nm, nin = 1025, N = 105 ,
and using nout = N nin Pγ→γ , we obtain:

Strong B field

2nd cavity

Zero-field

PVLAS

Cosmo

10-6 10-5 10-4 0.001

10-9

10-8

10-7

10-6

10-5

m@eVD

Ε

θ = 1◦ —————————————– - - - -
θ = 0.5◦ ——————————– - - - - - -

θ = 0.1◦ ———– - - - - - -
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D. Conclusions & Outlook



Conclusions & Outlook

The photon polarization tensor is the central quantity, when
aiming at investigating & understanding vacuum polarization
effects in intense fields.

We have obtained:
I non-perturbative insights,
I retaining the full momentum dependence,
I i.e., in particular beyond the pair-creation threshold,

in case of a constant external magnetic field.

This is
I important whenever transforming to position space,
I necessary when boundary conditions are set in position space.

It hopefully will be published soon.



The End ...

Thank you for your attention!
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