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A Flat Hard Wall

We consider the scalar field, usually taking ξ = 1
4 .

T (t, r, r′) ≡ −
∞
∑

n=1

1

ωn
φn(r)φn(r

′)∗e−tωn .

E = T00 = − lim
···

1

2

∂2T

∂t2
,

pj = Tjj = lim
···

1

8

(

∂2T

∂xj
2
+

∂2T

∂x′
j
2 − 2

∂2T

∂x ∂x′

)

.
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Empty space:

T 0(r, t; r
′, t′) = − 1

2π2

1

(t− t′)2 + ‖r− r′‖2 .

Note dual role of t:
• Ultraviolet cutoff.
• Wick rotation: t = −i(x0 − x′0).

Local point-splitting in direction uµ (Christensen):

Tµν =
1

2π2t4

(

gµν − 4
uµuν

uρuρ

)

.

Thus Tµν
ren = Λgµν .
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Dirichlet wall at z = 0: (r⊥ ≡ (x, y))

T ren =
1

2π2

1

t2 + (r⊥ − r′⊥)
2 + (z + z′)2

.

Set r′⊥ = 0, x′0 = 0 ;
t, r⊥, z − z′ are still available as cutoff parameters.

Recall E = −
1

2

∂2T

∂t2
, etc.
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M ≡ t2 + x2 + y2 + (z + z′)2.

2π2E = M−3[−3t2 + x2 + y2 + (z + z′)2],

2π2p1 = M−3[−t2 + 3x2 − y2 − (z + z′)2],

p2 similar; p3 = 0.

(Rigid displacement of the wall does not change total
energy. But ∃ layer of energy against wall.)
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x

z

Imagine another planar boundary at x = 0 ; let’s find
pressure on it (from left side only). Volume of space
occupied by boundary energy increases with x, so total
energy does.
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In accordance with the principle of energy balance
(virtual work) one expects

F =

∫ ∞

0

T 11 dz = −E = −
∫ ∞

0

T 00 dz.

If all cutoffs are removed,

E =
1

32π2z4
= −p1 ,

so energy balance is formally satisfied, but the integrals
are divergent.
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Ultraviolet cutoff (t 6= 0, r⊥ = 0, z′ = z):

F = + 1
2E (not (−1)E).

This E is negative and is the same one gets from ex-
pansion of

E =
1

2

∑

n

ωne
−tωn .

But I shall argue this E is wrong and this F is
(relatively) correct.
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Point-splitting ⊥ to movable wall (x 6= 0, others 0):
(t, E) exchange places with (x,−p1).

F = +2E > 0.

(This time E is “right” and F is wrong.)

Point-splitting in neutral direction (y 6= 0, others 0):

F = −E, as should happen!

2π2E = (y2 + 4z2)−2 > 0, 2π2p1 = −(y2 + 4z2)−2.
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Possible Responses to the Pressure Paradox

1. Divergent terms are so cutoff-dependent that they
have no physical meaning whatsoever, and the only
meaningful calculations are those in which these terms
can be canceled out (e.g., forces between rigid bodies).

2. Expressions with finite cutoff, such as
2π2E = (y2 + 4z2)−2 (where y is now a cutoff pa-
rameter, not a coordinate) can be regarded as ad hoc
models of real materials, more physical and instructive
than their limiting values, such as E = 1/32π2z4.
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The paradox casts some doubt on the viability of
this point of view. It now appears that physically plau-
sible results can be obtained only by using different cut-
offs for different parts of the stress tensor. For the lead-
ing divergence (and higher-order divergences in the bulk
that occur in curved space-time or external potentials)
the preferred ansatz is “covariant point-splitting” based
on the wave kernel, treating all directions in space-time
equivalently, and removing the cutoff-dependent terms in
such a way that the only ambiguity remaining can be re-
garded as a renormalization of the cosmological constant.
For the divergences at boundaries, it appears that the
points must be separated parallel to the boundary, but
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in a direction orthogonal to the component of the stress
tensor being calculated. Moreover, if the separation has a
time component, a Wick rotation seems mandatory.

This situation cannot be regarded as a logically
sound, long-term solution; its sole justification is that,
unlike less contrived alternatives, it does not immediately
produce results that are obviously wrong.

3. Find a better model!

General ξ: Added terms
• do not exhibit the paradox: ∆p = −∆E always;
• integrate to 0 anyway.
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Curved Hard Walls

In flat case, isn’t there an equal and opposite force from
the other side of the wall?

The paradox was discovered (S.A.F. and M. Schaden)
in calculations for a spherical boundary. Ultraviolet
cutoff gave F = + 1

2E. Inside and outside energy
layers have the same sign; total energy proportional to
surface area.
Cylindrical case is under investigation.
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Flat Soft Walls

Precursors

[Plasma model: Barton (2004, 2005)]

Potential model: A. Actor and I. Bender, Phys. Rev. D
52 (1995) 3581.

[Also: Bordag (1995); Jaffe, Graham, et al. (2002– ;
book of Graham–Quandt–Weigel, 2009)]
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The Power Wall Model

ϕ = vϕ, v(r) =

{

0, z < 0,

zα, z > 0

(increasingly steep wall near z = 1 as α → ∞).

Eigenfunctions φ(k⊥,p) = (2π)−1eik⊥·r⊥φp(z) ,

(

− ∂2

∂z2
+ v(z)− p2

)

φp(z) = 0.
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When z < 0, φp(z) =
√

2
π sin[pz − δ(p)]

for some real phase shift δ(p).

When z > 0,

φp(z) ∝
{

Ai(z − p2), α = 1,

D 1

2
(p2−1)(

√
2 z), α = 2, · · ·

tan
(

δ(p)
)

= −p
φp(0)

φ′
p(0)

.
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The Texas Approach

Details in Proceedings of Dartmouth Conference on
Spectral Geometry, Proc. Symp. Pure Math., in press.

[Bouas et al., arXiv:1006.1162]

Asymptotics of δ : E.g., for α = 1 (the Airy function)

δ(p) ∼
{

p 32/3Γ( 43 )/Γ(
2
3 ), p → 0,

2p3

3 + π
4 , p → ∞.

(In general, δ ∝ p1+2/α at ∞.) Might walls be well
parametrized by δ(p) instead of v(z) ?
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After integration over transverse Fourier dimensions,

T ren =
1

2π2

∫ ∞

0

dp
e−sp

s
cos
(

p(z + z′)− 2δ(p)
)

in potential-free region (z < 0); s ≡
√

t2 + |r⊥|2.
Components of Tµν are second derivatives of this.

Convergence is extremely delicate when s → 0, which is
precisely where we need it. (In fact, the convergence is
only in a distributional sense.)
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A slight improvement from going to polar coordinates
in Fourier space:

T ren =
1

π3

∫ ∞

0

dρ

∫ 1

0

du s−1 sin(sρ
√

1− u2 )

× cos
(

(z + z′)ρu− 2δ(ρu)
)

.

These integrals are being investigated with Riesz–
Cesàro summation and modern methods for oscillatory
quadrature, and preliminary results (for α = 1) look
plausible.
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The Oklahoma Approach

The Texas approach in effect did a generalized Fourier
analysis in z to get to the problem of a reduced Green

function in the (t, r⊥) coordinates. (Note that e−sp/s,

s ≡
√

t2 + |r⊥|2, is a Yukawa potential.) The oscillations
in the eigenfunctions φp(z) are the source of the bad
integral behavior.

Instead, let’s do a Fourier analysis in the transverse
dimensions to define a reduced Green function in the
z direction. It will vanish at infinity, not oscillate.
[Milton, Phys. Rev. D, in press; arXiv:1107.4589]
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For α = 1, in region z, z′ < 0 (κ ≡
√
k⊥

2 − ω2 )

gω,k⊥
(z, z′) =

1

2κ
e−κ|z−z′|

+
1

2κ
eκ(z+z′) 1 + Ai′(κ2)/κAi(κ2)

1− Ai′(κ2)/κAi(κ2)
.

Eren =
1− 6ξ

6π2

∫ ∞

0

dκκ3e2κz
1 + Ai′(κ2)/κAi(κ2)

1− Ai′(κ2)/κAi(κ2)

(vanishes if ξ = 1
6 ).
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The integral for E can be computed without incident.
It displays a weak divergence as z → 0−:

E ∼ − 1

192π2

1

z
(for ξ = 1

4 ).

It corresponds to a z ln z singularity in T . This effect
is attributable to diffraction off the singularity of the
potential at z = 0; it goes away for larger α, as we’ll
see.
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Inside the wall (z, z′ > 0):

gω,k⊥
(z, z′) = πAi(κ2 + z>)Bi(κ

2 + z<)

− (κBi− Bi′)(κ2)

(κAi−Ai′)(κ2)
πAi(κ2 + z)Ai(κ2 + z′).

Before renormalization, with ultraviolet cutoff,

E ∼ 3

2π2

1

t4
− z

8π2t2
+

z2

32π2
ln t,

showing the expected “Weyl” terms correlating with
the heat kernel expansion in presence of a potential
v(z) = z. Two new divergences, but not scary:

24



Renormalization

Removal of those terms has a physical interpretation.
Include the dynamics of the v field:

−2L = (∇φ)2 +m2φ2 + φ2v + (∇v)2 +M2v2 + Jv.

φ = m2φ+ vφ ; v = M2v + 2φ2 + 2J.

(J is whatever it takes to support our static v.)
T00 acquires new terms ∝ M2v2, Jv.
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T00 acquires new terms ∝ M2v2, Jv. Now recall (from
heat-kernel theory) that T00 contains t−2v, ln t v2,
ln t v′′. Thus t−2v and ln t v2 renormalize M and J .
A v′′ term in the action is formally a total divergence,
so it doesn’t contribute to the v equation of motion.
But it will not integrate to 0 in the total energy, since
v has noncompact support. When α = 1 this term is
a delta function that doesn’t show up in the Oklahoma
calculation.
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General α and General ξ

(−∂z
2 + κ2 + zα)F±(z) = 0 (κ =

√

k⊥
2 − ω2).

F± ∼ Q−1/4 exp

[

±
∫

dz

(

Q1/2 +
v′′

8Q3/2

)]

,

Q ≡ κ2 + v(z), v(z) = zα (for z > 0).
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Inside the wall:

E ≈ 3

2π2

1

t4
− v

8π2t2
+

1

32π2

(

v2 + 2
3 (1− 6ξ)v′′

)

ln t,

exhibiting the Weyl structure of divergences.

Outside (but near) the wall:

Eren(z) ∼
6ξ − 1

96π2
Γ(1 + α) |z|α−2Γ(2− α, 2|z|).
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The singularity at z = 0 disappears for α > 2 :

Eren(0) ≈
1− 6ξ

96π2

Γ(1 + α)22−α

2− α
.

For α < 2,

Eren(z) ∼
6ξ − 1

96π2
Γ(1 + α)

(

|z|α−2Γ(2− α)− 22−α

2− α

)

∼ 1− 6ξ

48π2
(γ + ln 2|z|) as α ↑ 2.
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Conclusions

1. Understanding local energy density and pressure
is essential for general relativity and clarifies the
physics of global energy and force calculations.

2. For hard (Dirichlet) walls, an ultraviolet cutoff
yields physically inconsistent results for energy
and pressure.

3. Modifying the cutoff to point separation in a “neu-
tral” direction yields physically plausible results,
but logical justification is lacking.
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4. We seek to model a wall by a soft but rapidly in-
creasing potential barrier, such as the power wall.

5. Outside the potential, the effect of the soft wall is
parametrized by the scattering phase shift, δ(p),
whose asymptotics can be calculated at low and
high frequency.

6. We have “exact” formulas for 〈Tµν〉 in terms of
the phase shift, but evaluating them is numerically
challenging.
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7. Reorganizing the power-wall calculation gives
rapidly converging integrals in terms of the eigen-
functions. Computations have been extended to
the “inside” of the wall (0 < z).

8. “Bulk” divergences inside the wall renormalize the
equation of motion of the potential itself.

9. Numerical computations have been done for α = 1
(linear potential), but there are analytical results
for general α. (α → ∞ best approximates a hard
wall (at z = 1).)

32



10. Calculations are easily extended to general ξ. As
usual, conformal coupling ξ = 1

6 yields the least
singular results.
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