A system of Schrödinger equations modeling two trapped ions.
Some controllability results and open problems.

Jean-Pierre Puel
in collaboration with
Sylvain Ervedoza and Mazyar Mirrahimi

JPP : Ikerbasque and BCAM, Bilbao
and
LMV, Université de Versailles St Quentin, Versailles
jppuel@bcamath.org

Benasque, August 29., 2011.
1 Physical motivation

2 Mathematical model

3 Change of frame

4 Approximate system
 - Lamb-Dicke approximation
 - Averaging approximation

5 Strategy

6 Exact control of the approximate system
 - Some invariant spaces
Trapped ions or Qubits

- The goal is to create quantum logic gates like the phase gate or the C-Not gate. See S.Haroche lectures at College de France on Quantum Information Theory (available on the web) and experiments by the group S.Haroche, J.M.Raimond and collaborators at ENS Paris.
- Experiments are based on trapped ions (qubits) with the case of one single trapped ion (one qubit problem) or two coupled trapped ions (two qubits problem).
Trapped ions or Qubits

- Each ion is a two level system, trapped in an electromagnetic cavity, all ions are stabilized by the same spatial oscillations, here a harmonic oscillator with vibration quantum ω (phonon).
- The system is submitted to a superposition of electromagnetic waves of complex amplitude u_1 and u_2. The phases depend on the spatial coordinate in order to be able to conserve the impulse: when an ion absorbs a photon, its energy changes and its impulse captures the photon impulse and excites the (quantized) vibration modes (phonon) inside the trap.
Mathematical model

- Two ions.
- Each ion is a two level system.
- Coupled to the same quantized harmonic oscillator

\[A = \frac{1}{2}(-\partial_{xx}^2 + x^2) \]

with vibration quantum \(\omega \).

We have

\[A = a^\dagger a + \frac{1}{2} = aa^\dagger - \frac{1}{2} \]

where

\[a = \frac{1}{\sqrt{2}}(x + \partial_x) \]

is the annihilation operator and

\[a^\dagger = \frac{1}{\sqrt{2}}(x - \partial_x) \]

is the creation operator.
Mathematical model

- Controls: two electromagnetic waves of complex amplitude u_1 and u_2 and phases depending on spatial coordinate:

$$u_j(t)e^{i(\Omega_j t - k_j x)}, \quad j = 1, 2,$$

- State of the system: 4-d vector-wave function

$$|\psi\rangle = \psi^t (\psi_{gg}, \psi_{ge}, \psi_{eg}, \psi_{ee})$$

- Dynamics of the system described by the Hamiltonian H

$$i\hbar \frac{\partial}{\partial t} |\psi\rangle = H |\psi\rangle,$$

where

$$\frac{H}{\hbar} = \omega A + \frac{\Omega}{2}(\sigma_{1,z} + \sigma_{2,z}) + \left(u_1 e^{i(\Omega_1 t - k_1 x)} + u_1^* e^{-i(\Omega_1 t - k_1 x)}\right)\sigma_{1,x}$$

$$+ \left(u_2 e^{i(\Omega_2 t - k_2 x)} + u_2^* e^{-i(\Omega_2 t - k_2 x)}\right)\sigma_{2,x}.$$

Jean-Pierre Puel

A system of Schrödinger equations modeling two trapped ions. Some controllability results and open problems.
Mathematical model

Pauli matrices:

\[
\sigma_{1,z} = (|e><e| - |g><g|)_1 = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\sigma_{2,z} = (|e><e| - |g><g|)_2 = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\sigma_{1,x} = (|g><e| + |e><g|)_1 = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\end{pmatrix}
\]

\[
\sigma_{2,x} = (|g><e| + |e><g|)_2 = \begin{pmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{pmatrix}
\]

Jean-Pierre Puel

A system of Schrödinger equations modeling two trapped ions. Some controllability results and open problems.
Schrödinger system

\[i \frac{\partial \psi}{\partial t} = \omega A \psi + \frac{\Omega}{2} \sigma_{1,z} \psi + \frac{\Omega}{2} \sigma_{2,z} \psi \]
\[+ (u_1 e^{i(\Omega_1^L t - k_1 x)} + u_1^* e^{-i(\Omega_1^L t - k_1 x)}) \sigma_{1,x} \psi \]
\[+ (u_2 e^{i(\Omega_2^L t - k_2 x)} + u_2^* e^{-i(\Omega_2^L t - k_2 x)}) \sigma_{2,x} \psi, \]
\[\psi(0) = \psi^0. \]

Question: Given an initial configuration \(\psi^0 \) and a final configuration \(\psi^1 \), can we find control amplitudes \(u_1 \) and \(u_2 \) in order to drive the system at time \(T \) “close” to \(\psi^1 \)?

Parameters:

\(\omega \) large and \(\Omega \) very large,

\[|\Omega_1^L - \Omega| << \Omega, \quad |\Omega_2^L - \Omega| << \Omega, \quad \omega << \Omega, \]

\[|u_1| << \Omega, \quad |u_2| << \Omega, \quad \left| \frac{du_1}{dt} \right| << \Omega, \quad \left| \frac{du_2}{dt} \right| << \Omega. \]
Laser frame

Set

\[\psi = e^{-i \frac{\Omega_1}{2} t \sigma_1} e^{-i \frac{\Omega_2}{2} t \sigma_2} \varphi \]

or

\[\varphi = e^{i \frac{\Omega_2}{2} t \sigma_2} e^{-i \frac{\Omega_1}{2} t \sigma_1} \psi. \]

And

\[\Delta_1 = \frac{\Omega - \Omega_1^L}{2}, \quad \Delta_2 = \frac{\Omega - \Omega_2^L}{2}, \]

\[k_1 x = \eta_1 (a + a^\dagger), \quad k_2 x = \eta_2 (a + a^\dagger), \]

where \(\eta_j, j = 1, 2 \) are the Lamb-Dicke parameters with

\[\eta_j \ll 1. \]
Interaction frame

\[A = a^\dagger a + \frac{1}{2}, \]
\[S(t) = e^{-i\omega tA}.e^{-i\Delta_1 t\sigma_{1,z}}.e^{-i\Delta_2 t\sigma_{2,z}} \]

\((A, \sigma_{1,z} \text{ and } \sigma_{2,z} \text{ commute.}) \)

\[\xi(t) = S(-t)\varphi(t) \quad , \quad \varphi(t) = S(t)\xi(t). \]

\[i \frac{\partial \xi}{\partial t} = S(-t) \left(u_1 e^{2i\Omega_1 t - i\eta_1(a+a^\dagger)} + u_1^* e^{i\eta_1(a+a^\dagger)} \right) (|e><g|)_1 S(t)\xi \]
\[+ S(-t) \left(u_1 e^{-i\eta_1(a+a^\dagger)} + u_1^* e^{-2i\Omega_1 t - i\eta_1(a+a^\dagger)} \right) (|g><e|)_1 S(t)\xi \]
\[+ S(-t) \left(u_2 e^{2i\Omega_2 t - i\eta_2(a+a^\dagger)} + u_2^* e^{i\eta_2(a+a^\dagger)} \right) (|e><g|)_2 S(t)\xi \]
\[+ S(-t) \left(u_2 e^{-i\eta_2(a+a^\dagger)} + u_2^* e^{-2i\Omega_2 t - i\eta_2(a+a^\dagger)} \right) (|g><e|)_2 S(t)\xi \]
Lamb-Dicke approximation

\[|\eta_1|, |\eta_2| << 1. \]

\[e^{i\eta_j(a + a^\dagger)} \sim \left(I_d + i\eta_j(a + a^\dagger) \right), \quad e^{-i\eta_j(a + a^\dagger)} \sim \left(I_d - i\eta_j(a + a^\dagger) \right). \]

We then have (for example)

\[e^{i\omega t A} (e^{i\eta_1(a + a^\dagger)}) e^{-i\omega t A} \sim I_d + i\eta_1 (ae^{-i\omega t} + a^\dagger e^{i\omega t}). \]

We obtain

\[i \frac{\partial \xi}{\partial t} = \left(u_1 e^{2i\Omega_1 t} \left(I_d - i\eta_1 (ae^{-i\omega t} + a^\dagger e^{i\omega t}) \right) \right. \]
\[+ u_1^* \left(I_d + i\eta_1 (ae^{-i\omega t} + a^\dagger e^{i\omega t}) \right) e^{2i\Delta_1 t} (|e > g|) \right) \xi \]
\[+ \left(u_1 (I_d - i\eta_1 (ae^{-i\omega t} + a^\dagger e^{i\omega t}) \right) \]
\[+ u_1^* e^{-2i\Omega_1 t} \left(I_d + i\eta_1 (ae^{-i\omega t} + a^\dagger e^{i\omega t}) \right) e^{-2i\Delta_1 t} (|g > e|) \xi \]
\[+ \ldots \]
First of all we take each control u_j to be a superposition of 3 monochromatic waves, two of them having a pulsation shifted by \pm a vibration quantum ω. In fact we take

$$u_1(t)e^{-2i\Delta_1 t} = v_0(t) + \tilde{v}_r(t)e^{-i\omega t} + \tilde{v}_b(t)e^{i\omega t}$$

$$u_2(t)e^{-2i\Delta_2 t} = w_0(t) + \tilde{w}_r(t)e^{-i\omega t} + \tilde{w}_b(t)e^{i\omega t}.$$

Then, using the averaging approximation, we can show that we can neglect the rapidly oscillating terms as ω, Ω_1^L, Ω_2^L and Ω are very large.
Similar to Law-Eberly equations in the case of one qubit.

\[
i \frac{\partial y}{\partial t} = (v_0 - i\eta_1 \tilde{v}_r a^\dagger - i\eta_1 \tilde{v}_b a)(|g><e|)_1 y
\]
\[
+ (v_0^* + i\eta_1 \tilde{v}_r^* a + i\eta_1 \tilde{v}_b^* a^\dagger)(|e><g|)_1 y
\]
\[
+ (w_0 - i\eta_2 \tilde{w}_r a^\dagger - i\eta_2 \tilde{w}_b a)(|g><e|)_2 y
\]
\[
+ (w_0^* + i\eta_2 \tilde{w}_r^* a + i\eta_2 \tilde{w}_b^* a^\dagger)(|e><g|)_2 y.
\]

Writing

\[v_r = -i\eta_1 \tilde{v}_r, \quad v_b = -i\eta_1 \tilde{v}_b,\]

\[w_r = -i\eta_1 \tilde{w}_r, \quad w_b = -i\eta_1 \tilde{w}_b,\]

and

\[y =^t (y_{gg}, y_{ge}, y_{eg}, y_{ee}),\]

we obtain
Approximate model

\[i \frac{\partial y_{gg}}{\partial t} = (v_0 + v_r a^\dagger + v_b a)y_{eg} + (w_0 + w_r a^\dagger + w_b a)y_{ge} \]

\[i \frac{\partial y_{ge}}{\partial t} = (v_0 + v_r a^\dagger + v_b a)y_{ee} + (w_0^* + w_r^* a + w_b^* a^\dagger)y_{gg} \]

\[i \frac{\partial y_{eg}}{\partial t} = (v_0^* + v_r^* a + v_b^* a^\dagger)y_{gg} + (w_0 + w_r a^\dagger + w_b a)y_{ee} \]

\[i \frac{\partial y_{ee}}{\partial t} = (v_0^* + v_r^* a + v_b^* a^\dagger)y_{ge} + (w_0^* + w_r^* a + w_b^* a^\dagger)y_{eg} \]

\[y(0) = y^0. \]
Strategy

- Find a control (exact if possible) for the approximate system which drives an initial configuration to a desired one in time T. We would like to have only one of the controls (v_0, v_r, v_b or w_0, w_r, w_b) being active at each time these controls being piecewise constant (not mandatory...).

- Take this control in the original system. This will provide an approximate control for the real system in time T. This can be proved due to approximation properties for the Lamb-Dicke and the averaging approximations mentioned above.

- Approximate control is relevant here because when we switch off control we keep close to the target (property of Schrödinger system).

- Both the original and the approximate systems are reversible and preserve the $(L^2)^4$-norm.
Control of the approximate system

It remains to study the control properties for the approximate system. Here we have only partial results at the moment and a (strong) conjecture for obtaining the global result.

We use the spectral decomposition of operator A. Its eigenfunctions ϕ_n are the Hermite functions associated with eigenvalues $n + \frac{1}{2}$ that, for convenience, we may write $\phi_n = |n \rangle$. We then have

$$A|n \rangle = \left(n + \frac{1}{2}\right)|n \rangle,$$

and

$$a|0 \rangle = |0 \rangle, \ a|n + 1 \rangle = \sqrt{n + 1}|n \rangle, \ a^\dagger|n \rangle = \sqrt{n + 1}|n + 1 \rangle.$$
Control of the approximate system

For instance, if we write $|gg, n\rangle = \langle n |y_{gg}\rangle$ and similar notations, and if only v_r is active, $|gg, n\rangle$ and $|eg, n - 1\rangle$ form an independent system which solves

$$i\partial_t |gg, n\rangle = v_r \sqrt{n} |eg, n - 1\rangle, \quad i\partial_t |eg, n - 1\rangle = v_r^* \sqrt{n} |eg, n\rangle.$$

Of course, similar computations can also be done when the other controls are active.

We can represent these decompositions and their dynamics as follows:
Control of the approximate system

\begin{align*}
\nu_0 \left\{ \begin{array}{ll}
|gg, n\rangle \leftrightarrow_{|v_0|} |eg, n\rangle, \\
|ge, n\rangle \leftrightarrow_{|v_0|} |ee, n\rangle,
\end{array} \right.
\end{align*}

\begin{align*}
\nu_r \left\{ \begin{array}{ll}
|gg, n+1\rangle \leftrightarrow_{\sqrt{n+1}|v_r|} |eg, n\rangle, \\
|ge, n+1\rangle \leftrightarrow_{\sqrt{n+1}|v_r|} |ee, n\rangle,
\end{array} \right.
\end{align*}

\begin{align*}
\nu_b \left\{ \begin{array}{ll}
|gg, n\rangle \leftrightarrow_{\sqrt{n+1}|v_b|} |eg, n+1\rangle, \\
|ge, n\rangle \leftrightarrow_{\sqrt{n+1}|v_b|} |ee, n+1\rangle,
\end{array} \right.
\end{align*}

\begin{align*}
\omega_0 \left\{ \begin{array}{ll}
|gg, n\rangle \leftrightarrow_{|w_0|} |ge, n\rangle, \\
|eg, n\rangle \leftrightarrow_{|w_0|} |ee, n\rangle,
\end{array} \right.
\end{align*}

\begin{align*}
\omega_r \left\{ \begin{array}{ll}
|gg, n+1\rangle \leftrightarrow_{\sqrt{n+1}|w_r|} |ge, n\rangle, \\
|eg, n+1\rangle \leftrightarrow_{\sqrt{n+1}|w_r|} |ee, n\rangle,
\end{array} \right.
\end{align*}

\begin{align*}
\omega_b \left\{ \begin{array}{ll}
|gg, n\rangle \leftrightarrow_{\sqrt{n+1}|w_b|} |ge, n+1\rangle, \\
|eg, n\rangle \leftrightarrow_{\sqrt{n+1}|w_b|} |ee, n+1\rangle.
\end{array} \right.
\end{align*}
One can go from any pure state $|ee, n>$ to any pure state $|gg, m>$. Let us take the case $m < n$.

\[
|ee, n> \xrightarrow{\sqrt{n}|v_b|} |ge, n-1> \xrightarrow{|v_0|} |ee, n-1> \cdots |ee, m+1>
\]

\[
|ee, m+1> \xrightarrow{\sqrt{m+1}|v_b|} |ge, m> \xrightarrow{|w_0|} |gg, m>.
\]
To go from $|gg, 0\rangle$ to $(|gg, 0\rangle + |ee, 0\rangle)/\sqrt{2}$, we use 4 steps: v_b, w_0, w_b, w_0:

$$|gg, 0\rangle \xrightarrow{v_b} \frac{1}{\sqrt{2}}(|gg, 0\rangle + |eg, 1\rangle) \xrightarrow{w_0} \frac{1}{\sqrt{2}}(|ge, 0\rangle + |ee, 1\rangle)$$

$$\xrightarrow{w_b} \frac{1}{\sqrt{2}}(|gg, 0\rangle - |eg, 0\rangle) \xrightarrow{w_0} \frac{1}{\sqrt{2}}(|gg, 0\rangle + |ee, 0\rangle).$$
To go from $a_0|gg, 0 > + b_0|ge, 0 > + c_0|eg, 0 > + d_0|ee, 0 >$ with $|a_0|^2 + |b_0|^2 + |c_0|^2 + |d_0|^2 = 1$ to $|gg, 0 >$.

- Turn on w_0 to kill term in $|ee, 0 >$.
- Turn on v_r during t_1 with $|v_r|t_1 = \frac{\pi}{2}$ to obtain $a_1|gg, 0 > + b_1|ge, 0 > + c_1|gg, 1 >$.
- Turn on w_r during time t_2 to kill term in $|gg, 1 >$. We obtain $a_2|gg, 0 > + b_2|ge, 0 >$.
- Turn on w_0 to obtain $|gg, 0 >$.

Jean-Pierre Puel

A system of Schrödinger equations modeling two trapped ions. Some controllability results and open problems.
 invariant spaces

Let us introduce the spaces

\[X_n^0 = \text{Span} \{ |gg, n\rangle, |ge, n\rangle, |eg, n\rangle, |ee, n\rangle \} / \mathbb{C}, \ n \in \mathbb{N}, \]
\[X_{n+1}^b = \text{Span} \{ |gg, n\rangle, |ge, n+1\rangle, |eg, n+1\rangle, |ee, n+2\rangle \} / \mathbb{C}, \ n \in \mathbb{N}, \]
\[X_{n+1}^r = \text{Span} \{ |ee, n\rangle, |ge, n+1\rangle, |eg, n+1\rangle, |gg, n+2\rangle \} / \mathbb{C}, \ n \in \mathbb{N}, \]

and

\[X_0^b = \text{Span} \{ |ge, 0\rangle, |eg, 0\rangle, |ee, 1\rangle \} / \mathbb{C}. \]
\[X_0^r = \text{Span} \{ |ge, 0\rangle, |eg, 0\rangle, |gg, 1\rangle \} / \mathbb{C}. \]

- \(X_n^0 \) is invariant under the action of the controls \(v_0, w_0 \);
- \(X_n^b \) is invariant under the action of the controls \(v_b, w_b \);
- \(X_n^r \) is invariant under the action of the controls \(v_r, w_r \).
We also define the spaces

\[Y_n^0 = \text{Span} \{ |gg, k\rangle, |ge, k\rangle, |eg, k\rangle, |ee, k\rangle, \, k \leq n \} / C, \]
\[Y_n^r = \text{Span} \{ |ee, k\rangle, |ge, k+1\rangle, |eg, k+1\rangle, |gg, k+2\rangle, \, k+1 \leq n \} / C. \]

We have

\[Y_n^0 = \bigcup_{k \leq n} X_0^k, \]
\[Y_n^r = \bigcup_{k+1 \leq n} X_{k+1}^r. \]
It can be shown, as for the “easy examples”, that:

- X_0^r is controllable with controls v_r and w_r.
- Y_0^r is controllable with controls v_r, w_r and w_0.
- Y_0^0 is controllable with controls v_r, w_r and w_0.
How to obtain a general result?

In order to obtain a general result, it would be enough to show that we can drive Y^r_n to Y^r_{n-1} in a controlled time. We have

$$Y^r_n = Y^r_{n-1} \cup X^r_n,$$

and we know that both Y^r_{n-1} and X^r_n are invariant under the action of v_r and w_r. Therefore we would like to use only the controls v_r and w_r. Then we want to show that with these controls, any element of X^r_n can be driven to $|ee, n>$ for example in a controlled time.

This question is still open at the moment. We are trying (without success until now) to give an explicit construction and this is a problem in X^r_n only and therefore in finite dimension (4) !!