Open Questions About the First Galaxies

Zoltán Haiman

Columbia University

The Dark Age

Even most basic questions are open!

- When did the first stars form, and what were their masses ? (rotation rates?)
- Were they isolated or multiple-star systems?
- When and how did they first assemble into something "stable" that we would call a galaxy?
- When did the first BHs appear, and how did they grow so rapidly into $10^9 \, M_\odot$ BHs that are present at z=6?
- When and how was the universe re-ionized?

Challenge to audience: can you pose a question* about the first galaxies that has been settled uncontroversially?

* Question must be (i) intelligent and (ii) must have a non-trivial answer

Results from Hubble Ultra Deep Field

Bouwens et al. 2010; Illingworth et al. 2010,

Results from Hubble Ultra Deep Field

Bouwens et al. 2010; Illingworth et al. 2010,

James Webb Space Telescope (JWST)

a.k.a. First Light Machine

Launch: 2014 (?)

Detection Threshold: ~3 nJy (NIRCam) 1-5µm in 10⁴ sec

- Corresponds to $M_{BH} = 10^5 M_{\odot}$ or $M_{stars} = 10^6 M_{\odot}$ at z=10
- DM halo mass of detectable quasars/galaxies: $\sim 10^9 \, {
 m M_{\odot}}$
- Few mini-quasars, and few 10s of "dwarf-galaxies" arcmin⁻² at z>10
- z=10 galaxies with R(vir)~1kpc resolvable at 0.02"
- BUT: First galaxies may be more distant and below this threshold

How will we see these things? Only indirectly? Through effects on IGM/CMB, or explosive remnants: SN,GRB

Seed Fluctuations on Small Scales

e.g. Yoshida et al. (2003)

Halo Collapse in LCDM

Smallest scales condense first

Jeans mass: $\sim 10^4 \, M_{\odot}$

possible further delay in gas by ∆z~4: Tseliakovich & Hirata (2010) Greif et al. (2011) Stacy et al (2010) Maio et al. (2010)

Radiative Cooling Function (H+He gas)

cf. Halo virial temperature:

$$T_{\rm vir} = 10^4 \left(\frac{M}{10^8 M_{\Theta}}\right)^{\frac{2}{3}} \left(\frac{1+z}{11}\right) {\rm K}$$

Gas Phase Chemistry: $H + e^{-} \rightarrow H^{-} + \gamma$ $H^{-} + H \rightarrow H_{2} + e^{-}$

Gas inside halos with T_{vir} ≥ 200 K can cool via H₂

Haiman, Thoul & Loeb (1996) Tegmark et al. (1997)

3D Simulation of a Primordial Gas Cloud

Fig. 1: Projected gas distribution around the protostar. Shown regions are, from top-left, clockwise, (A) the large-scale gas distribution around the cosmological halo (300 pc on a side), (B) a self-gravitating, star-forming cloud (5 pc on a side), (C) the central part of the fully molecular core (10 astronomical units on a side), and (D) the final protostar (25 solar-radii on a side). We use the density-weighted temperature to color (D), to show the complex structure of the protostar. Yoshida, Omukai & Hernquist (2008)

Cosmological halo: $M_{tot} \approx 5 \times 10^5 \, M_{\odot}$ $z \approx 14$

Protostar in core $T \approx 10,000 \text{ K}$ $n \approx 10^{21} \text{ cm}^{-3}$ $M_* \approx 0.01 \text{ M}_{\odot}$

Final stellar mass: M_{*} ~ 100 M_☉

Computation? 3D Simulation of a Primordial Gas Cloud

Fig. 1: Projected gas distribution around the protostar. Shown regions are, from top-left, clockwise, (A) the large-scale gas distribution around the cosmological halo (300 pc on a side), (B) a self-gravitating, star-forming cloud (5 pc on a side), (C) the central part of the fully molecular core (10 astronomical units on a side), and (D) the final protostar (25 solar-radii on a side). We use the density-weighted temperature to color (D), to show the complex structure of the protostar. Yoshida, Omukai & Hernquist (2008)

Cosmological halo: $M_{tot} \approx 5 \times 10^5 \, M_{\odot}$ $z \approx 14$

Protostar in core T ≈10,000 K n ≈10²¹ cm⁻³ M_{*} ≈ 0.01 M_☉

Final stellar mass: $M_* \sim 100 \ M_{\odot}$

Final Stellar Mass?

Shang, Bryan & Haiman (2010)

Final Stellar Mass?

Shang, Bryan & Haiman (2010)

10²⁻³ M_o Pop III star Abel et al.; Bromm et al.; Yoshida et al.

No Fragmentation?

Many arguments against fragmentation over past 10 yrs:

- growth time-scale + wavelength of linear perturbations
- growth of non-spherical deformation (γ=dlnP/dlnp>1)
- rotation-induced fragmentation ($\alpha = E_{th}/E_{gr}$ $\beta = E_{th}/E_{gr}$)
- efficient turbulent mixing
- simulations with prescribed EOS (Clark et al. 2008)

Omukai, Schneider, ZH (2008)

Yoshida et al. (2007)

Or...Fragmentation?

Using sink particles to follow post-1st-clump evolution ~10 fragments with masses of 0.1-10 M_☉ Driven by turbulence and disk self-gravity? Greif et al. (2011); also Prieto et al. (2011), Clark et al. (2010); Stacy et al. (2010)

Remnants of Massive Stars

Heger et al. 2003 (for single, non-rotating stars)

First Stars → First Galaxies...

- Formation of the 1st Star ✓
- Formation of the 2nd Star
- Formation of the 3rd Star
- Formation of the 4th Star
- Formation of the 5th Star

Formation of the 3743rd Star ← First Galaxy ? Formation of the 3744th Star

Feedback Processes

• INSIDE MINIHALO

- UV flux unbinds gas
- supernova expels gas, sweeps up shells
- H₂ chemistry (positive and negative)
- metal pollution: enable atomic C,O cooling

• GLOBAL (FAR REACHING OR LONG LASTING)

- H₂ chemistry (X-rays: positive and UV: negative)
- photo-evaporation (minihalos with σ < 10 km/s)
- photo-heating (halos with 10 km/s $< \sigma < 50$ km/s)
- entropy floor (inactive fossil HII regions)
- global dispersion of metals (pop III \rightarrow pop II)
- mechanical (SN blast waves)

Does first galaxy have to wait for "atomic cooling" halo with deeper potential well $(T_{vir} > 10^4 K)$?

SF/Reionization History Self-Regulates?

Case 1 : No net feedback reionization completes early small halos high source density smooth He/H close in time

Case 2 : Negative feedback reionization completed later larger halos, more sparce sources patchy "swiss cheese" He/H farther in time

IF H_2 -feedback regulates reionization history, then there will be a period with a robust 'steady state' solution for the star formation history - need to know $J_{crit}(M_{halo},z)$

Distant Quasars: Reionization at z~6?

Observational Breakthrough in 2002: SDSS quasars at z~6

 $\langle x_{\rm H} \rangle \approx 10^{-4}$ z=5.82

$$\langle x_{\rm H} \rangle \approx 2 \times 10^{-4}$$
 z=5.99

Gunn-Peterson trough:

 $\langle x_{\rm H} \rangle \gtrsim 10^{-3}$

z=6.28

Fan et al. 2002

Reionization Constraint from QSO Spectra

IGM
 HII region (x_{HI} ~ r²)

Two contributions to Lyα absorption:

HII region (x_{HI} ~ r²) Gunn-Peterson wing

3 quasars yield: $X_{\rm HI} \gtrsim 0.04$ - 0.1

(Mesinger & Haiman 2007)

WMAP: Evidence for Negative Feedback

Haiman & Bryan (2006)

Reionization by Stars vs BHs

note: photon mean free path ~ Gpc $(E/1 \text{ keV})^3$ $[(1+z)/10]^{-3}$ f_{HI}⁻¹

Stars only: Photon m.f.p. << source sep. swiss cheese

Stars + BH mix: Photon m.f.p. ~< source sep. Blurred swiss cheese

Accreting BHs dominate: Photon m.f.p. >~ source sep. Nearly uniform ionization

A Perturbation Theory of Reionization

Zhang, Hui & Haiman (2007)

- Power spectrum of fluctuations (HI, HII) will be smoothed on scales below the mean free path of ionizing photons leaking into the IGM
- We will need parameterized model to fit to future data (such as 21cm) probing ionization topology
- Semi-numerical simulations (Mesinger & Furlanetto 2008)
- On large scales (k ≤0.1 Mpc⁻¹), linear perturbation theory should be adequate:
 define small δ_H, δ_{HII}, δ_γ, δ_{gal}, and solve ionization balance and radiative transfer → power spectra as a function of parameters
- Example: typical spectral slope $\beta = -d \ln F_{\nu}/d \ln \nu$

Power Spectra: Stellar vs BH Reionization

Zhang, Hui & Haiman (2007)

Observation of SMBHs near z = 6 Rare ("5 σ ") objects: 10 found in SDSS at z>6 (in ~10 Gpc³) **20 in CFHQ** (Willott et al. 2010) + few others Example: SDSS 1114-5251 (Fan et al. 2003) z=6.43 $M_{bh} = L_{obs} / L_{Edd} \approx 4 \times 10^9 M_{\odot}$ How did this SMBH grow so massive? (Haiman & Loeb 2001) e-folding (Edd) time: 4 x ($\epsilon/0.1$) 10⁷yr No. e-foldings needed $\ln(M_{bh}/M_{seed}) \sim 20$ for $M_{seed} \sim 100 M_{\odot}$ Age of universe (z=6.43) $8 \ge 10^8 \text{ yr} \checkmark$

Gravitational lensing? No. (Keeton, Kuhlen & Haiman 2004)

Strong beaming? No. (Haiman & Cen 2002)

"Stellar seed" vs "direct collapse"

• STELLAR SEEDS

uninterrupted near-Eddington accretion

- continuous gas supply
- avoid radiative feedback depressing accretion rate
- must avoid ejection from halos
- successful model can be made, but overproduces 10^{5} - 10^{6} M_{\odot} BHs needs 'feedback' (Tanaka & Haiman 2010)

• DIRECT COLLAPSE

rapid formation of 10^5 - 10^6 M_{\odot} black holes either by direct collapse of gas or super-Eddington accretion onto a lower-mass seed

- gas must be driven in rapidly (deep potential)
- must avoid fragmentation
- transfer angular momentum
- successful model can be made, but requires very high UV flux to suppress H₂ formation (Shang, Bryan & Haiman 2010)

Critical UV flux for SMBH formation

Shang, Bryan & Haiman (2010)

Simulations with enzo: 3 halos with M ~10⁸ M_o identified in 1 Mpc box
re-simulate each halo, 13-18 refinement levels, with J=0, 10, 100, 10⁴, 10⁵

Collapse with UV flux from normal stars (T*=10,000 K)

Expected background flux at z~10:

J(UV) ~ 10

 $30 < J_{crit} < 100$

SMBH by direct collapse possible (?)

- In-fall proceeds at sound speed $c_s \approx 10$ km/s
- Mass accretion rate $M_{acc} \propto c_s^{3}$
- Fragmentation is not seen
- Central object has mass $M \approx 10^5 M_{\odot}$ (cf. $M \approx 10^2 M_{\odot}$ with H_2 , when $c_s \approx 1-2$ km/s)

SMBH by direct collapse possible (?)

Shang, Bryan & Haiman (2010)

Normal stars (soft UVB)

Pop III stars (hard UVB)

10⁸

SMBH by direct collapse possible (?)

Shang, Bryan & Haiman (2010)

10²⁻³ M_o Pop III star Abel et al.; Bromm et al.; Yoshida et al. <u>10⁵ M_o supermassive star/BH</u> Fuller, Woosley & Weaver(1986)

Can we have sufficiently large UV flux?

- (non-linear) source clustering.
- Poisson fluctuations in # of neighbors.
- UV luminosity scatter

Dijkstra, Haiman Mesinger & Wyithe (2008) Ahn et al. (2009) 1 in ~10⁷ halos has a close (\leq 10 kpc) bright and synchronized neighbor, so flux is ~ 30 × mean

N~10³ Gpc⁻³ halos, could all end up in z=6 QSO hosts

Direct SMBH formation: impact of metals Including the effect of (1) irradiation and (2) metals

Omukai, Schneider & Haiman (2008)

Alternative heating: magnetic field

Sethi, Haiman & Pandey (2010)

- Primordial magnetic field can be generated during phase transitions in the early universe
- Current best upper limit from CMB anisotropy: B~1nG
- Can ambipolar diffusion in collapsing halo balance HI cooling?

10000

How do we figure this out? LISA ?

Baker et al. (2007)

LISA event rate: M- σ model iman (2009) $10^4 M_{\odot} < (1+z)M_{bh} < 10^7 M_{\odot}$

Tanaka & Haiman (2009)

- Internal feedback regulates BH mass set to maintain extrapolated M-σ relation
- Growth driven by mergers: slow accretion, tracks halo growth on Hubble time
- Many ejections
 can exceed half ρ_{BH}

Probing Star-formation: High-z Supernovae

Mesinger, Johnson & Haiman (2006) Miralda-Escude & Rees (1998)

- Even normal core-collapse SNe visible for months at z>10
- 4 24 SNe per ~10 arcmin² field at z ≥ 5 at the detection threshold of 3 nJy (obtainable with a 10⁵ s exposure in the 4.5 µm band)
- 2-yr survey: several hundred SNe/unit-z at z ~ 6
- SNe rates can be used to measure SFR out to z ~ 13
- 1% 50% of SNe at z=10 are pair-instability
- Challenge: SN long lasting, need repeat observations separated by ~yr.
- Worthy investment: only (almost) direct trace of total SFR

- When did the first stars form, and what were their masses ? (rotation ?) z=20-30 all the way to z=3-4? $M_*=0.1-100 M_{\odot}$
- Were they isolated or multiple-star systems?

N_{*}=1-10, depending on fragmentation and ejection

When and how did they first assemble into something "stable" that we would call a galaxy?

z=10-15 M_{halo} =10⁸ M_{\odot} N_{stars} <10³ Below JWST limit!

When did the first BHs appear, and how did they grow so rapidly into 10^9 M_{\odot} BHs that are present at z=6?

stellar seeds, direct collapse,... or something more exotic

(large-scale magnetic field? DM annihilation-powered stars?)

When and how was the universe re-ionized?

between z=6-15 - by stars (swiss-cheese) or accreting BHs (smooth)